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Abstract—Location-based services have become very popular
in recent years. Although many previous works targeted the
problem of indoor localization, several reasons still prevent the
widespread adoption of most systems’ implementations. Some of
these reasons are their insufficient availability, and the need for
extensive node deployment and maintenance. In this work, we
present a highly accurate room-level indoor localization system
that is based on ultrasound technology. Our system is robust to
noise, scalable, has a low complexity on the receiver, and does
not require synchronization between transmitter and receiver.
Moreover, it uses commercial off-the-shelf (COTS) components
and does not require special hardware or additional infrastruc-
ture to be deployed. The system relies solely on ultrasound, and
does not use any RF signals. To deal with the problem of signal
interference, we explain how signal collisions can be detected,
and we propose a method for collision avoidance. The system
was implemented and tested in scenarios with realistic conditions.
The results prove that the proposed system is accurate and robust
to ambient noise. This work was conducted in the frame of the
European project ‘SmartHeat’, which aims to improve heating
conditions of elderly people, and reduce energy consumption.
It employs rooms’ occupancy information with other inputs, to
adapt the heating according to users’ habits.

I. INTRODUCTION AND RELATED WORK

In recent years, location-based services have become very
popular, due to the fast increase in the number of mobile
devices. As people spend most of their time indoors, a reliable
indoor localization system would have a great impact on the
location-based applications that they use. Global Navigation
Satellite Systems (GNSS), like the Global Positioning System
(GPS), are the prevalent technology for positioning outdoors.
However, it is not possible to use them for indoor localization,
as their signals are obstructed.

For indoor localization, several technologies have been
investigated [1], [2], [3], many systems were tested, and
numerous methods were suggested to improve their perfor-
mance. These systems rely on different technologies like
WiFi [4], [5],Bluetooth [6], [7], ultra-wideband [8], ultra-
sound [9], or hybrid technologies [10], [11]. However, there is
currently no standard for an indoor localization system, like it
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is the case for GPS. Some of the main reasons are the insuffi-
cient availability, and the need for extensive node deployment
and maintenance, which prevent the widescale adoption of
most systems’ implementations [12]. Thus, a robust, reliable,
and widely available indoor localization system would pave
the way for a wide range of applications.

The required accuracy level varies according to the corre-
sponding application. While exact positioning is needed for
some applications, room-level accuracy would be sufficient
for some others. As exact positioning usually requires more
hardware to be deployed, applications that only require a
room-level accuracy, aim for a localization system that uses
the least possible equipment, and that is easy to deploy.
Moreover, an ideal room-level localization system should be
easily scalable.

Room-level localization has been the subject of many re-
search works. Some of the works suggest the use of RF-
based technologies, using the received signal strength (RSS)
to infer the position of the receiver. RSS values are compared
against known propagation models to determine the receiver’s
position. One option is to use Bluetooth Low Energy (BLE),
by placing one BLE beacon per room, like in [13], [14].
However, as electromagnetic signals are not confined to the
room limits in general, the accuracy may deteriorate due signal
leakage leading to confusion of RSS values, especially when
the rooms have different dimensions. Therefore, a dense de-
ployment of beacons is required to get a satisfactory accuracy,
which may become expensive and impractical in large deploy-
ments. The accuracy of RF-based systems can be enhanced by
using fingerprinting techniques. In this context, previous works
suggested the use of cellular networks signals [15], WiFi
signals [16], [17] or Bluetooth [18]. Collecting fingerprint
maps of the RSS values requires an off-line training phase,
in order to compare them to the measurements obtained in
real time, and map these measurements to the correct room.
However, these systems in general do not achieve perfect room
accuracy, as in some scenarios we might end up with different
points having very similar RSS fingerprints. Additionally, the
need for an off-line phase is time consuming and can add a
significant overhead when deploying on a large scale.

Some other studies proposed the use of sound waves.
SoundLoc [19] uses sound signals to infer unique signatures



for different rooms. A limitation of this sytem is that it
requires a training phase, as well as relying on audible sounds
which might be disturbing for people. Shahid et al. [20]
used dedicated ultrasound beacons for room-level localization.
However, their system requires special ultrasonic transducers
that operate at a frequency of 40kHz. Borriello et al. [21] used
a combination of ultrasound and WiFi packets, generated by
PCs to achieve room level accuracy. Nonetheless, the system
requires having PCs in all the rooms, which may not be
available on all environments.

The contribution of our work is a room-level localization
system that uses ultrasound signals solely, without any RF
signals. Moreover, our system uses commercial off-the-shelf
(COTS) components, like mobile phones, commercial loud-
speakers, and does not need special hardware or an additional
infrastructure to be deployed. The proposed system is accurate
and robust to ambient noise and signal interference. It was
implemented and experimentally tested in order to characterize
its performance.

The rest of this paper is organized as follows. Section II
provides a general background about ultrasound technology.
Then, Section III details the design aspects of our system, Sec-
tion IV presents the packet collision detection and avoidance
methods, and in Section V the system’s characteristic features
are discussed. The experimental setup and the testing results
are shown in Section VI. Finally, future work directions along
with conclusions drawn are presented in Section VII.

II. BACKGROUND

Ultrasound signals are sound waves above the human hear-
ing range, and share the same physical properties with audible
acoustic waves. The human hearing capability is limited to a
certain frequency range, considered to be between 20Hz and
20kHz [22]. Sound waves above 20kHz are non-audible and
are called ultrasound. Figure 1 shows the frequency ranges
of sound waves, which can be categorized into infrasound,
audible sound, and ultrasound.

Fig. 1. Frequency ranges of acoustic signals

The use of ultrasound technology for indoor localization
is interesting. Because of their nature, ultrasonic waves are
inherently limited by walls and doors, which makes them
an excellent choice to achieve room-level granularity, as
compared to other RF-based technologies (WiFi, Bluetooth,
etc). Another interesting fact is that most commercial devices
support a certain frequency range of ultrasound, namely that
of 20-22kHz. The common sampling rate used in sound cards
is 44.1kHz, while some are even higher. This rate determines
the Nyquist frequency, which is the maximum frequency that
speakers and microphones can support, and is equal to half of
the sampling rate, or 22.05kHz.

Filonenko et al. [23] demonstrated the ability of mobile
phones to support ultrasound at the frequency range of 20-
22kHz. In our work, we have run additional tests to prove
that it is also the case for other devices including commercial
loudspeakers and microphones, in addition to mobile phones.
The devices that we tested are the following: Samsung Galaxy
S4 and S5, HTC One M7, Nexus 5X, Logitech and Creative
loudspeakers, Logitech and Blue microphones. Although we
have tested a limited number of devices, other ones should also
enjoy the same capabilities, given that they use a sampling rate
of 44.1kHz or above.

III. SYSTEM DESIGN

A. Architecture

Our localization system is composed of one transmitter per
room and a single receiver. The transmitter is a commercial
loudspeaker. However, custom made ultrasound beacons can
also be used instead. Each room needs to have one transmitter,
which periodically emits an ultrasonic signal. The broadcasted
signal contains information thar relates it to the room. On the
other side, the receiver is a mobile device that captures the
ultrasonic signals and identifies the corresponding room. The
receiver needs to have a microphone, it can be a smartphone,
a tablet, a smartwatch, or even a robot equipped with a
microphone.

B. Ultrasound Signal Design

The design of the transmitted ultrasonic signal used for
localization is critical. It should be supported by commercial
loudspeakers and microphones, and also be non-audible at the
same time. Moreover, the signal should be detected and de-
coded robustly in noisy environments, and has to accommodate
for multiple rooms. The previous requirements translate into
the following points:

1) The signal frequency bandwidth should be picked from
the frequency band 20-22kHz

2) The signal form should ensure a good autocorrelation
3) The signal modulation is to be carefully chosen so that

it accommodates for any number of rooms
Taking these constraints into consideration, we decided to use
the chirp signal, and design the ultrasound signal as a packet
containing two parts, as shown in Figure 2: the first part is
the pilot signal, common to all rooms, and the second part
is the identifier represented by a binary sequence. Having
the transmitted signal composed of two parts, instead of one,
reduces the computational complexity at the receiver side, and
makes the decoding process simpler, as will be discussed later
in Section V.

Fig. 2. Design of the transmitted ultrasound packet
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1) Pilot Signal: The pilot signal is composed of one chirp
pulse. Peng et al. [24] proposed the use of the linear chirp
signal in ultrasound systems, as it has a good autocorrela-
tion function. A linear chirp is a signal whose frequency
increases linearly with time. During experimental tests, when
the amplitude of the chirp signal was not properly scaled,
we noticed that the loudspeaker generates an unpleasant tick
sound, due to the abrupt change in the amplitude of the
audio signal. Therefore, to guarantee a smooth performance,
we decided to scale the chirp pulse by a triangular function,
so that its amplitude increases gradually at the start, and
decreases similarly at the end. The continuous time domain
representation of the chirp scaled by a triangular function is
given by the following formula:
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where Tchirp is the chirp duration, f0 and f1 are the lower
and upper frequency limits of the chirp respectively, and q =
(f1−f0)/2.

In our system, we manipulate and process the ultrasonic sig-
nal in discrete-time domain. The discrete-time representation
of the chirp then becomes:
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where fs is the sampling frequency, and N = fs × Tchirp.
As a design choice, we select the lower and upper frequency

limit of the chirp to be 20kHz and 20.5kHz respectively. The
length of the chirp pulse is an important factor for accurate
detection. The pulse needs to be long enough to be resistant to
noise, and short enough to reduce computational complexity
and power consumption on the receiver side. As a trade-off,
we empirically chose the pulse duration to be 10ms. Figure 3
shows the time plot of the pilot signal, composed of a single
chirp pulse.

Fig. 3. Time plot of the scaled pilot chirp signal

2) Identifier: Our system is intended to rely only on
ultrasound, without the need for RF signals like Bluetooth
or WiFi. Therefore, the source’s unique identifier should be
embedded in the ultrasonic signal itself. To achieve this, we
use frequency multiplexing as a modulation scheme, and we
append additional chirp signals to the pilot. This way of signal
modulation ensures flexibility and scalability of the system.
The identifier is a unique binary sequence, represented by a
train of chirp pulses. Bits 0 and 1 are assigned to two chirp
signals with different frequencies. We choose to represent the
bit 0 by a chirp whose frequency band is 20.5-21kHz, and
the bit 1 by another chirp of 21-21.5kHz. Figure 4 shows the
frequency allocation of the signals.

Fig. 4. Frequency allocation of chirp signals

The number of rooms determines the length I of the
identifier. As a rule, I = dlog2Ne bits are needed to represent
N rooms. To give an example of the transmitted ultrasonic
signal, and without loss of generality, we consider a scenario
where we have 8 rooms, so that the identifier is composed
of 3 bits. With 3 bits, the binary sequence identifiers are:
0002,0012,. . . ,1112. Each one of these unique identifiers is
assigned to a room. Figure 5 shows four of the eight signals
assigned to the rooms, while the remaining four are similar
and go from 1002 to 1112. The period of emission T defines
the update rate of the receiver, which should also be equal to
the recording time.

C. Ultrasound Signal Decoding

The receiver is responsible for identifying the room it
is inside. It continuously listens to the environment and
records the received sound. To identify the correct room, the
receiver processes the recorded signal to decode the ultrasonic
component. The detection process is divided in three steps,
in order to ensure its robustness while keeping computations
as low as possible. Decoding starts by filtering the recorded
signal, then a coarse detection step locates the pilot signal,
and finally a fine decoding step decodes the information
embedded in the ultrasonic signal, and retrieves the identifier
bit sequence.

1) High-Pass Filter: The signal recorded by the
microphone contains different frequencies ranging from
low audible frequencies, up to high non audible ones. In
order to filter out low frequencies and make the system
immune to noise, we filter the recorded signal by a discrete-
time high-pass filter to keep only the ultrasonic components
at 20-22kHz, before proceeding in the decoding process.
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Fig. 5. Transmitted ultrasonic signals for different rooms

2) Coarse Detection: In this step, the receiver checks
whether the ultrasonic signal was actually received, indicating
that the device is in range of the localization system. The
algorithm looks for the pilot signal in the whole recorded
signal, and, if found, locates its position inside this signal.
If the pilot signal is not found, the receiver is assumed to be
out of range, and is not in any of the designated rooms. To
detect the pilot signal, a matched filter is used by correlating
the received signal with the known pilot signal. The matched
filter was chosen as it is the one that maximizes the signal-
to-noise ratio. The peak correlation result is compared against
a certain threshold, which is empirically calculated and set. If
the peak correlation value exceeds the threshold, the ultrasonic
signal is considered to be received successfully, the mobile
device is then assumed to be in one of the designated rooms,
and the fine decoding step takes place. Otherwise, the mobile
device is assumed to be out of range. The position of the peak
correlation indicates the starting point of the pilot signal, as
shown in Figure 6. The position of the pilot in the recorded
signal is used to decode the subsequent bits.

Let the transmitted pilot signal be X = [x1, x2, ..., xN ] and
the recorded signal be Y = [y1, y2, ..., yL] where L� N . The

Fig. 6. The first plot shows the recorded audio signal. The second plot
shows the result of its cross-correlation with the known pilot signal

peak correlation value is given by Equation 1:

peak correlation = max
k

N∑
n=1

xny(n+k)

for 0 ≤ k ≤ L−N
(1)

The starting point of the pilot signal corresponds to the index
of the peak correlation:

K∗ = arg max
k

N∑
n=1

xny(n+k) for 0 ≤ k ≤ L−N (2)

3) Fine Decoding: Once the pilot signal is located, the
receiver proceeds to decode the identifier binary sequence,
bit by bit. To decode one bit, the receiver correlates the
corresponding signal with the two chirps that are used to
represent the bits 0 and 1. Assuming the two chirps that
modulate the bits 0 and 1 are respectively A = [a1, a2, ..., aN ]
and B = [b1, b2, ..., bN ], the receiver calculates the following
two quantities to decode the first bit that follows the pilot
signal:

bit zero correlation =

N∑
n=1

any(n+N+K∗) (3)

bit one correlation =

N∑
n=1

bny(n+N+K∗) (4)

14



where K∗ is the index found in Equation 2. If the signal is
successfully received, one of the two quantities resulting from
Equations 3 and 4 will be positive and above the threshold.
This quantity corresponds to the actual received bit, while the
other one will be close to zero, as a result of correlating with
the wrong bit. If the result of Equation 3 is the one that is
positive, then the signal is decoded as 0, and if it is the second
one who is positive, the signal is decoded as 1. However,
if both quantities of Equations 3 and 4 are positive and
above the threshold, this indicates that two different signals
were superposed and that a collision took place between the
ultrasonic packets of adjacent rooms. In Section IV, we will
explain how the occurrence of such collisions is minimized.

Decoding the subsequent bits goes similarly. The receiver
should know the length of the identifier beforehand. Once all
bits are decoded and no collision is detected, the identifier
binary sequence can be mapped to the correct room number,
and the room is successfully identified.

D. Confidence Score

When looking for the pilot signal in the recorded sound,
the receiver selects the highest peak of the correlation result.
In case multiple packets from different rooms are received,
this will yield the strongest signal among them, which will
be used then to identify the corresponding room. However,
this does not indicate how reliable the localization result is.
Therefore, we introduce the confidence score, as a measure
of the reliability of the result. Instead of considering just the
highest peak value of the correlation, the receiver also locates
all other peaks that are above the threshold, which indicate the
signals that are received from the adjacent rooms. If M peaks
are detected in total, we refer to the ith peak as Pi, and to the
maximum peak as Pmax. Then, the following formula is used
to compute the confidence level as a percentage:

confidence score = 100× Pmax∑M
i=1 Pi

(5)

The previous formula can be interpreted as the following: if
only one signal is detected, the confidence score of the result
of room localization is 100%. Otherwise if multiple signals
are received, although the strongest among them is used to
identify the room, the confidence score in this case is penalized
by an amount that is equivalent to the relative intensities of
other received signals. Figure 7 shows an example where three
different packets were received. The highest peak in this case
(P2) is used to identify the room, while the other two are
considered to be received from the adjacent rooms, and are
used to calculate the confidence score, which in this example
is equal to around 60%.

As a summary, the flow chart of Figure 8 depicts the
complete localization process.

IV. PACKET COLLISION

Transmitted signals from adjacent rooms may interfere,
especially when the user is at a boundary point between rooms.
Collided ultrasonic packets may lead to erroneous detection by

Fig. 7. Three different signals received with different intensities

Fig. 8. Flow chart of the localization process

the receiver. This section explains how such collisions could
be detected, and also suggest a method to avoid collisions.
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Fig. 9. A scenario showing two transmitters of adjacent rooms, and the
receiver in the boundary regions between them

A. Collision Detection

A collision is assumed to take place at the receiver when
the latter is not able to decode the received signal correctly.
Failing to decode one or more bits in the identifier sequence
will indicate a collision of two or more signals. As mentioned
earlier, if the results of Equations 3 and 4 both give positive
values above the threshold, then this indicates that two dif-
ferent signals modulating bits 0 and 1 have interfered, and a
collision of packets has occurred. In this case, the receiver
cannot identify the correct room, and reports an error due to
collision. Then, it listens to the next transmitted packet in order
to identify the corresponding room.

B. Collisions Elimination

Collisions are desired to be fully eliminated. In our system
design, we start from the assumption that the transmitters
are not synchronized, aiming for a system that has a low
complexity and which does not require the deployment of
extensive infrastructure. Hence, we assume that we do not
have control over the emission time instants of different
transmitters. Under this assumption, we show that packet
collisions cannot be completely eliminated.

We consider the scenario depicted in Figure 9, where two
transmitters are placed in two adjacent rooms. Each transmitter
emits an ultrasonic packet periodically every T seconds. The
two transmitters are not synchronized, we denote by ∆t the
time difference between their emission time instants:

−T < ∆t < T

The receiver Rx that needs to be located is somewhere in
the boundary region between the two rooms, and can hear
both emissions. Assume that the ultrasonic packet emitted by
the first transmitter reaches the receiver at time t1, and the

one emitted by the second transmitter at time t2. Taking into
account the propagation time of the ultrasonic signal, t1 and
t2 can be written as:

t1 = nT +
d1
cair

t2 = nT + ∆t +
d2
cair

where cair is the speed of sound in air.
Assuming that the signal duration is Tsignal, the condition

on t1 and t2 so that no packet collision occurs is such that:

|t2 − t1| > Tsignal

which yields:

|∆t +
d2 − d1
cair

| > Tsignal (6)

This means that in order to guarantee no packet collision,
∆t and the distance difference (d2 − d1) should satisfy the
condition in Equation 6. But since ∆t can take any value
in the interval (−T, T ), the aforementioned condition is not
guaranteed to hold. An example that violates the condition
is when ∆t is very small (close to 0), and the values of d1
and d2 are very close to each other, making the result of
|∆t + (d2−d1)/cair| less than Tsignal.

Moreover, if a collision happens at some point P , it will
lead to infinite collisions at that point, because the values of
T , Tsignal, and ∆t are constants.

C. Collision Avoidance

As collisions cannot be fully eliminated, we aim to reduce
the probability of their occurrence. In other words, if a
collision occurs at a certain time, we try to maximize the time
that will pass before another collision would occur again. We
found that this is not possible if different transmitters have
the same period of emission T . To reduce the probability
of collisions between signals of adjacent rooms, we propose
to assign different periods of emissions to the corresponding
transmitters. We found that the best strategy to reduce the
probability of collisions is to assign periods of emissions
which differ exactly by Tsignal. Figure 10 shows the emission
time instants of transmitters of adjacent rooms.

With this technique, the chance of successive collisions is
eliminated. Moreover, if a collision occurs at a certain time at
some point P between signals of adjacent rooms 1 and 2, the
next collision at point P will occur at tcollision, which in this
case is:

tcollision = nT1 = mT2

where m and n are the number of emissions of transmitter 1
and 2 respectively, before the next collision occurs (as shown
in Figure 10). Knowing that the first collision occurs when
m = n− 1, and replacing T2 by T1 + Tsignal, we get:

tcollision = nT1 = (n− 1)(T1 + Tsignal)
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Fig. 10. Adjacent rooms have slightly different periods of emissions: no successive collisions occur, and the time between two collisions is maximized

which yields:

n = 1 +
T1

Tsignal
(7)

This means that one collision will happen every n transmis-
sions, so the probability of collision is:

collision probability =
1

n
=

Tsignal
T1 + Tsignal

(8)

V. SYSTEM CHARACTERISTIC FEATURES

The proposed system enjoys the following characteristics:
• Availability: as it is sufficient to have loudspeakers for

our system to work, it is suitable to use in many
environments, such as museums, hospitals, offices, and
shopping malls, without the need to deploy additional
infrastructure. As ultrasounds do not alter audible sounds,
the same speakers can still be used to play music or to
broadcast voice messages.

• Robustness: the methods that are used for signal modu-
lation and processing, like chirp signals, frequency mul-
tiplexing, and matched filters, make the system robust
against ambient noise. Moreover, assigning distinct peri-
ods of emission guarantee low collision rates.

• Scalability: the system is easily scalable to accommodate
any number of rooms.

• Ease of deployment: the system can be easily deployed
and ready to use without the need for an offline training
phase.

• Low complexity: by dividing the ultrasound signal in two
parts, the decoding process becomes of low complexity
in terms of number of operations, which guarantees a fast
response time on the receiver side. Having the pilot signal
as a common part for all rooms, requires the receiver
to correlate the recorded signal with the pilot signal
only, before proceeding to identify the corresponding
room. If we did not have a common signal part, the
receiver would have to match the recorded signal with all
possible signals from different rooms, in order to identify

the correct room. In that case, signal decoding becomes
computationally expensive, especially when the system is
scaled to accommodate a large number of rooms.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

In order to test the system’s functionality, we have imple-
mented it in our lab, at the Battelle building of the University
of Geneva. We used one fixed loudspeaker per room, which
periodically transmits a unique ultrasonic packet. The chosen
periods of emission are around 5sec. We focused the tests
on two adjacent rooms with different dimensions, along with
the corridor, as shown in Figure11. The rooms were assigned
distinct periods of emissions as described in Section IV. On
the receiver side, an Android application was developed for
room localization. This application receives the broadcasted
ultrasonic signals, and implements the decoding process de-
scribed in Section III. It was installed on a Samsung Galaxy
S5 smartphone.

Fig. 11. A map showing the rooms subject to testing

B. Tests and Results

We chose 20 different points to cover the selected area, as
shown in Figure 12. At each of these points, 100 measurements
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were recorded consecutively, using the Android localization
application, as Figure 13 shows, and under ambient noise
conditions. The experiments were repeated twice: the first time
with closed doors, and the second with open doors.

Fig. 12. Points at which the tests were performed

Fig. 13. A snapshot of the Android localization application

Tables I and II show the results for the case with closed
doors, and that with open doors respectively. The tables show
the percentage of the results that match the correct room in
which the user is, and the average of the confidence scores of
these results.

Interpretation of Results

In the case of closed doors, the ultrasonic signals are
confined to the room in which they are emitted, and the signals
leaking from adjacent rooms are very weak. This leads to
perfect room localization results, with high confidence scores,
and also causes the collisions to vanish. On the other hand,
when the doors are open, the signals from adjacent rooms can
interfere, leading to packet collisions. However, the probability
of such collision is very low, thanks to our suggested method.
This explains why we obtain very low false detection results,
which correspond to collided packets.

The confidence score is affected by the strength of the
signals received from adjacent rooms. Nonetheless, it is up
to the application layer to use this score, in order to judge the

TABLE I. Room Localization Results - Closed Doors

Point Number Correct Room Results Average Confidence Score
1 100% 94.8%
2 100% 95.2%
3 100% 96.7%
4 100% 95.1%
5 100% 94.5%
6 100% 94.6%
7 100% 95.1%
8 100% 94.5%
9 100% 95.3%
10 100% 96.2%
11 100% 95.1%
12 100% 95.6%
13 100% 97.7%
14 100% 96.5%
15 100% 95.1%
16 100% 94.8%
17 100% 96.0%
18 100% 95.9%
19 100% 98.2%
20 100% 97.7%

TABLE II. Room Localization Results - Open Doors

Point Number Correct Room Results Average Confidence Score
1 99% 68.3%
2 99% 77.1%
3 100% 82.8%
4 99% 76.5%
5 99% 70.8%
6 99% 73.2%
7 99% 77.7%
8 100% 84.0%
9 99% 80.9%
10 99% 81.5%
11 100% 86.2%
12 100% 89.4%
13 100% 93.3%
14 100% 90.7%
15 99% 75.1%
16 99% 68.0%
17 100% 83.5%
18 99% 76.2%
19 100% 90.4%
20 100% 91.9%

reliability of the localization result, when multiple signals are
received. It is also notable that the confidence score is high
when the receiver is close to the transmitter, and it decreases
as we move away from it.

VII. CONCLUSION AND FUTURE WORK

In this work, we have proposed an ultrasound based room-
level localization system, that can be built out of COTS com-
ponents. The designed system is robust, scalable, and has a low
computational complexity and collision rate. It was shown to
have a very good performance in ambient noise environments.
The system was designed for localization inside houses in the
context of smart heating, however its characteristic features
make it a suitable solution to use for other applications and
in different environments, such as hospitals, museums, offices,
shopping malls, etc. A future plan is to use an error-correcting
code in the transmitted ultrasonic packets, and, potentially,
make some modifications to the signal, so that it works also in
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more challenging environments. Moreover, the effect of chosen
ultrasound signals on pets may be also of interest to investigate
in a future work.
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