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Abstract—How can the collected data from testing an indoor
positioning deployment be transformed into information con-
cerning the optimal tuning of a positioning system in this de-
ployment? How can such kind of accumulated information from
several deployments be transformed into more generic knowledge
regarding the system’s performance, with respect to several
performance goals? In this work, we present a multiobjective
optimization methodology of tuning indoor positioning systems,
based on real data recorded onsite. Selecting the appropriate
tuning for a positioning system is a challenging task, which
depends on many factors: the specific deployment, the devices
used, the evaluation metrics and their order of significance,
the user-case scenarios tested, etc. In order to handle these
multiplicities, we introduce the use of multiobjective optimization
which allows several objectives to be simultaneously satisfied. We
exemplify the methodology performing tests with the GpmStudio
platform, a desktop tuning and evaluation platform that supports
our Global Positioning Module (GPM). The methodology proves
to be a very useful tool in the hands of testers who are designated
to optimally tune the positioning system in a variety of scenarios.

Keywords—Multiobjective optimization, Indoor positioning,
Tuning, Ground truth definition, Positioning evaluation, Track-
ing, Indoor positioning deployment

I. INTRODUCTION

During the last years, the indoor positioning community has
identified the need to establish well defined methodologies of
evaluating the performance of indoor positioning systems [1].
A series of works [2], [3], [4], [5], [6], has offered several
well defined alternatives, some of which are the formal ways
of performing indoor positioning competitions, like the ones
held in the IPIN [4], [5] and the IPSN [6] conferences.

Furthermore, apart from the evaluation methodologies that
have started to draw significant attention by the indoor posi-
tioning community, the methodologies of optimally tuning a
system form also a domain worth discussing, sharing ideas on
and improving. Assume a positioning expert called to deploy
a positioning system, tune it properly, present it and report its
performance. While the part of the evaluation and its relevant
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methodologies have started to be extensively discussed, the
step of how the system is tuned accordingly does not appear to
have gained the same popularity. It is not rare that, regarding
the optimal tuning of the system, an empirical selection of
the appropriate tuning is mentioned, or a manual test-and-set
procedure.

The question of how to tune a positioning system at a new
deployment has drawn our interest. We have approached the
domain of evaluating and tuning positioning systems with a
trilogy of works. In the first work of this trilogy [2], we
established a methodology of ground truth definition and
position evaluation of online positioning solutions. In the
second work [7], we presented an offline tuning and evaluation
methodology based on recorded data. By presenting in that
work our offline parameter optimization platform (GpmStu-
dio), the way that the methodology excepts the tester from the
obligation to repeatedly revisit the deployment environment to
test-and-set the IPS parameters was exemplified. The current
study is the natural continuation and a significant expansion
of the latter [7], concluding the trilogy with the introduction
of multiobjective optimization techniques.

The broad goal of optimally tuning a positioning algorithm,
may be composed of a multitude of objectives to be satisfied.
This multitude of objectives may concern different kinds of
multiplicities. It is generally accepted [6] that it is very hard
to fully capture the effectiveness of an indoor localization
algorithm with a single metric. Using a unique metric might
not be representative of a system’s performance, and could be
unfair when used for comparisons. A more holistic evaluation
would be an appealing field of research. Thus, one kind of
multiplicity is the use of several evaluation metrics, as different
objectives to be satisfied. This approach can provide a more
complete evaluation of the performance of a system under test.

Moreover, selecting a parameter tuning based on a single
recording introduces the risk of overfitting. Combining several
recordings (with each recording being another objective) of the
same deployment could minimize this danger, by strengthening
the robustness of the parameter setting suggestion. Lastly,
using recordings from a variety of environments to infer a
parameter setting that handles a good trade-off in all of them,
could lead to a good selection of the default setting of the
system to be deployed in an unknown environment.

The rest of this paper is organized as follows. In Section II,
we introduce preliminary information, necessary for the rest of



the work. In Section III, the related work is discussed, along
with the contributions of this study. The proposed methodol-
ogy is theoretically presented in Section IV, along with the
implementation of the method with the related software tools.
The experimental results based on a multitude of recorded data
are presented and discussed in Section V. Lastly, conclusions
drawn and future directions of this work are discussed in
Section VI.

II. PRELIMINARIES

A. Multiobjective optimization

The goal of mathematical optimization is the selection of the
best element from a set of available alternatives, with regard to
an accurately defined criterion. The function which evaluates
the suitability of each candidate solution is called objective
function. The space of feasible solutions is called search space
or decision space. Many real life problems (in engineering,
economics, operational research, logistics, etc.) contain more
than one objective that needs to be satisfied. Multiobjective
optimization is the domain that is applied where optimal
decisions need to be taken, at the presence of more than one
objectives. In multiobjective optimization, the evaluation of a
candidate solution is a vector in a space with a number of
dimensions equal to the number of objectives. This space is
called the objective space.

Fig. 1. The decision space and the objective space in a multiobjective
optimization problem (Image from [8]).

In this category of problems, these multiple objectives
can often be contradictory. Therefore, a trade-off among all
relevant objectives is usually needed. The preferences concern-
ing all objectives (their relative significance, their importance
ranking, constrains, etc.) might often be unclear when stating
the problem.

The principle solution concept used in multiobjective opti-
mization is the notion of Pareto Optimality. With this solution
concept, a small optimal subset is selected from the set of all
candidate solutions. A solution A is said to Pareto-dominate
another solution B, if A is better (or equal) than B in all
objectives. A solution A belongs to the Pareto Optimal Set if
there exists no other feasible solution that Pareto-dominates A.
The image of the Pareto Optimal Set in the objective space is
referred to as the Pareto Front. Each candidate solution of the
population can be assigned with a Pareto Rank. All solutions
of the Pareto Front form the first rank. Excluding the first

rank from the population, and recalculating the Pareto Front,
provides the solutions of rank two. All following ranks are
calculated with the same procedure.

There is a plethora of algorithms and solution concepts,
that may use the notion of Pareto Optimality or not. A
simplistic approach is to transform the problem into a single
objective problem, by defining a linear combination of the
multiple objectives as the unique objective function. This
simple, practical and straightforward method has significant
limitations. Initially, it might be unclear to the designer how
to relatively weight all objectives, in a precise way. Moreover,
the objectives might be non-commensurable (the units of each
objective may be incomparable among them), and an effort
of normalizing them in order to combine them might not be
practical, feasible or desired.

The result provided by the solution concept of the Pareto
Optimality, is a set of non-dominated solutions that are con-
sidered optimal. The selection of a unique solution among the
Pareto Optimal Set (in case such is needed to be selected)
is left to the discretion of a Decision Maker (DM), who
chooses according to the current needs, and based on their
own criteria [9], [10].

Overall, a variety of algorithmic approaches allows the
designer to decide and precisely define how the trade-off
among conflicting objectives can be handled, in order to arrive
to a unique, optimal solution. The designer is free to define
priorities, relative weights or restrictions among the objectives.
Furthermore, it is also possible that a small list of optimal
solutions is calculated (Pareto Optimal Set), which can then
be given to a DM who has the expertise to select the most
preferable of these few optimal solutions. Decision support
systems aim to facilitate the DM in the final selection of
a unique solution. The flexibility in the ways of defining
preferences regarding the structure of the problem and the
characteristics of the desired optimal solution is a key element
of multi-objective optimization.

B. Data gathering

In contrast to works that are based on a simulation of a
deployment’s environment, this work is based on real data
collected in IPS deployments. The data that need to be
collected are of two main types:

• the timestamped measurements of raw signal receptions
• the spatiotemporal ground truth

The first category, concerning raw signals, is to be used
as an input of offline positioning algorithms that output
timestamped position estimates. These estimates are compared
with the spatiotemporal ground truth, in order evaluate the per-
formance of the system. In our previous works [2],[7], we have
fully characterized a dynamic data gathering methodology.
Here, we shortly describe this method, mentioning also other
similar methods that are broadly used, as in the positioning
competition of the IPIN [11] conference, and could be also
used to feed the tuning methodology of this work. Both our
proposed method and the one used in the IPIN competition



belong to the category of dynamic evaluation (e.g. a moving
tester) with predefined geometrical paths.

In these methods, a predefined path needs to be specified.
This path consists of a list of positions that will be followed,
one after the other, by a tester and will serve as checkpoints.
A tester has to follow this predefined path, holding the mobile
device that will continuously record all the raw signals that
it receives during the path (and/or the position estimates that
the positioning system produces), along with the timestamp of
each reception. The tester should move on the path, which is
composed of the straight linear segments that connect these
checkpoints, at a steady pace. The tester has to simply to
indicate to the recording application the moment at which he
passes over each checkpoint. In this way, every predefined
checkpoint is marked with the exact timestamp indicating
when the tester passed over it. These methods are subject to a
small error that is introduced by the human factor (imprecision
of the time or the location of clicking).

At the IPIN competition, the estimates that are evaluated are
the most recent estimates obtained before each checkpoint. In
our previous works [2],[7], we have proposed a continuous
evaluation of all received position estimates. This is achieved
by interpolating the ground truth between checkpoints, to
obtain the true position of the user for the time of the reception
of each position estimate. Assuming a steady pace of the tester
throughout the linear segment connecting two checkpoints, the
interpolation would introduce no error. It is noteworthy that
the tester is not required to maintain the same pace among
different segments, but only during each segment.

This method has the disadvantage of adding to the human
error that the tester may introduce by the imprecision in the
time or the location of clicking (an inherent disadvantage of all
similar methods), the interpolation error when not maintaining
an actual steady pace between two checkpoints. The range
of this possible error can be reduced by a dense checkpoint
placement. Overall, despite this minor error addition, the
benefits of this method are important for certain use cases. For
instance, this continuous evaluation method can fully capture
the experience of a user that would actually follow the path
while receiving position estimates, as the complete trajectory
estimation produced is evaluated. Also, it can provide metrics
that concern the totality of the estimated trajectory. These met-
rics may evaluate the smoothness of the estimated trajectory,
offering an indication of how pleasant the produced outcome
may be to a user.

Nonetheless, the rest of this work does no assumption about
the method used to collect the data, as long as a spatiotemporal
ground truth and timestamped raw signal measurements are
present. The tests of this work were done with our methodol-
ogy previously discussed in [2],[7]. It is left to the discretion
of the designer though to use the data gathering method that
suits their needs and preferences.

III. RELATED WORK

The field of IPS evaluation has attracted the attention of
researchers of the field over the last years. Indoor positioning

competitions have started becoming popular in relevant confer-
ences [4], [5], [6], [12]. Works have proposed methodologies
where a robot replaces the human tester who traverses the test
environment defining the ground truth and collecting data [3],
[13], [14]. Such robots are equipped with a high accuracy
positioning system, whose accuracy is higher by at least one
order of magnitude comparing to the system under test. A
recent interesting study [15] has focused in measuring the error
introduced by humans when they are called to statically place
a hand-held device over predefined points, defined by floor
or ceiling markers or defined relatively to landmarks of the
environment. People unfamiliar with the process participated
as a test group, achieving in all three cases (floor, ceiling
makers and landmarks) a median error lower than 10cm. In
the floor markers case, that is the one commonly used in
competitions, the median error was only 7.1cm, and the 95th
percentile of the error 15cm. The authors also present the
accuracy of a series of benchmarks that use high accuracy
positioning systems (as reported in the relevant publications),
ranging between 6.7 and 25cm. The results indicate a similar
accuracy between the human defined ground truth and the
commonly used reference systems.

Apart from the evaluation methodologies, the creation of
testbeds has gained popularity over the last years. In [13],
a visual testbed is introduced, in which a robot spans an
area recording both the raw signals and the ground truth
information throughout the area. These data are offered to
be used as a testbed for positioning systems. Moreover, the
creators of the IndoorLoc Platform [16], present a testbed
based on data collected by humans. This method is used for
the offsite track of the IPIN competitions, where the IPSs
of different teams compete by running positioning algorithms
offline, based on recorded data that they receive.

The metrics used to evaluate positioning systems can be
numerous. The statistics of the Euclidean error (mean, median,
percentiles, standard deviation, etc.) are the most commonly
used. Other metrics, such as the room, floor, or building hit
rate [12], the latency of estimation [3] or the smoothness of
the estimated trajectory [2], [17] are also used. It is not rare
that these metrics are combined in a unique final score [3],
[4] based on subjective criteria, introducing a simple case of
multiple objective handling.

It is common in the community to discuss the parts of
deploying and its requirements, the positioning methods, as
well as the ways of evaluating the system’s performance. It
is not rare though, that the step of how the system is tuned
accordingly is left undescribed, mentioning for example an
empirical selection of the appropriate settings. For instance,
among the five competing teams in the offline track of the
2016 IPIN competition [4], only one focuses in explaining
the procedure of optimizing the parameters of their system,
according to several objectives. The BlockDox team [4], chose
to optimize the hyper parameters of their algorithm hierarchi-
cally and greedily, by firstly optimizing the parameters of the
floor classification, and only then the location parameters. In
this way, when the optimum of each parameter was found, it



Fig. 2. Average positioning error, depending on two parameters, based on reckornings in two diferent environments.

was turned into a constraint and the optimization procedure
continued to optimize the next parameter.

So far, advanced multiobjective optimization techniques
have not been extensively use in the field of indoor positioning.
In a very interesting sequence of works [18], [19], [20], [21],
Domingo-Perez et al. and Martin-Gorostiza et al. introduce
multiobjective optimization techniques to solve the optimal
sensor placement problem. An adaptation of the state of the
art NSGA-II algorithm [22] is used, to infer the Pareto Optimal
Set of sensor placements, from which a decision maker can
choose. Contrary to our current work, these studies concern a
pre-deployment task, and therefore are based on simulations
of the resulting deployment. To the best of our knowledge, our
work is the first that brings the principal solution concept of
multiobjective optimization, the Pareto Optimality, in indoor
positioning problems based on real recorded data.

During the last decades, Multiobjective Optimization Evo-
lutionary Algorithms (MOEA) have been greatly studied. State
of the art algorithms, such as SPEA2 [23], NSGA-II [22]
and recently its evolvement NSGA-III [24], [25], have been
widely used in problems with many objectives, in search
of the Pareto Optimal Set. The goal of such algorithms is
finding the Pareto Optimal Set of non-dominated solutions,
among which a decision maker should choose one according
to their preferences [9], [10]. In this approach, preferences
are expressed a posteriori. On the other hand, in a priori
methods the decision maker expresses preferences regarding
the objectives in advance and in a formal way. For instance,
in some cases the tester is able to combine the objectives a
priori into a single objective function, or may define a desired
reference point in the objective space [26]. Lastly, interactive
methods allow the DM to intervene during the search, steering
the development of the search, as for instance by responding
to pairs of comparisons of candidate solutions [27].

According to relevant surveys [9], [28], the a posteriori
methods are the most used ones. Recent works of the field,
have tried to facilitate the task that remains for the DM,
that is choosing a final solution among the optimal set of
non-dominated solutions. Efficient visualization techniques for
Pareto Front and Set analysis have been proposed for helping
DMs in the selection task [28],[29]. Moreover, methodologies

of reducing the number of members in the Pareto Front
have been proposed to help the DM identify their preferred
solution [28].

IV. PROPOSED METHODOLOGY AND ITS
IMPLEMENTATION

A. Concept
In our previous work [7], we presented a methodology

that allows the tester to make consistent comparisons of
parameter settings, or even of different positioning algorithms,
by running positioning algorithms offline based on the same
recorded data. In this way, a tester is exempt from the tedious
task of repeatedly traversing the environment in order to tune
the parameters of the positioning system. Furthermore, the
offline running of optimization algorithms provided the pa-
rameter tuning that gives the best performance of the selected
evaluation metric based on a specific recording.

The goal of this work is to move further on, by doing
the extra step of combining different kinds of multiplicities,
and providing a result that efficiently handles a trade-off of
multiple objectives. These multiplicities may concern mul-
tiple recordings at the same environment, multiple mobile
devices, multiple environments, etc. In Figure 2, we see the
performance of an IPS in two environments. It is evident that
the best performance for each environment (the lowest mean
error in this case) is not achieved by the same parameter
values. How should the designer of the system choose among
a big variety of parameter settings? This problem becomes
even harder when considering hybrid systems, where apart
from the parameters that serve the positioning algorithm of
each technology used, additional parameters concerning the
hybridization of the technologies need to be also properly
tuned. To address these issues, we propose the introduction of
multiobjective optimization techniques, for optimally tuning
an indoor positioning system.

A first approach is to use the simplistic method of reducing
the problem to a single objective one, where the single
objective is a linear combination of the objectives. In cases
where the units of the objectives can easily be combined, and
that the designer is certain about the relative relevance of the
objectives, this method may be an appropriate way to approach



the problem. On the other hand, when combining many objec-
tives, or non-commensurable objectives, the solution concept
of the Pareto Optimal Set is more appropriate. The notion of
Pareto Dominance excludes all dominated solutions from the
Pareto Optimal Set, as it would be irrational to choose them.
From the resulting optimal set, the designers/decision makers
are free to choose according to their preferences.

Sum of ranking at each objective: In many cases, a support-
ing system to the final decision making process is required,
either to help the DM or to replace them in case the process
of selecting a parameter tuning needs to be automated. As
a supporting system, we propose a sum of the rankings
of each solution according to each objective. The candidate
solutions of the optimal set are sorted according to their
performance in each objective, and are assigned a ranking
at each objective accordingly. Summing the rankings of a
solution in all objectives, can give a unitless impression of
how well the solution performs in all objectives. Weights can
be introduced to the summing of rankings, in order to express
a potential difference of importance among the objectives.

B. Implementation

The GpmStudio platform, presented in our previous
work [7], is a desktop application that allows a tester who
interacts with a user friendly GUI, to access a database of
recorded data and run optimization algorithms which calculate
optimal parameter settings for the positioning algorithms used.
In this work, GpmStudio has been enriched with the addition
of the mutliobjective optimization module. The mutliobjective
optimization module of GpmStudio supports several algo-
rithms and solution concepts. The main solution concepts
of multiobjective optimization and relevant decision support
methods discussed in this work (Pareto Optimality, Linear
Combination of Objectives, Sum of Ranking at Each Objective)
are implemented and supported by GpmStudio.

In the following Section V, we present the results of tests
performed with the mutliobjective optimization module of
GpmStudio. Several recordings from different test environ-
ments are used, along with different evaluation metrics. Each
recording contains all receptions throughout a predefined path
that traverses all accessible areas of each test environment.
All tests are performed utilizing Bluetooth Low Energy (BLE)
receptions. The Received Signal Strength (RSS) is used by a
weighted centroid algorithm, used and discussed in previous
works [30],[31].

The focus of our tests is not on the specific positioning
algorithm used and its parameters, but rather on the method
with which the performance of the candidate solutions in
multiple objectives is handled. Thus, our analysis focuses on
the objective space and the relevant analysis therein, that holds
in any other relevant context without loss of generality, rather
than focusing on the search space which is bound to the
specific example. For the sake of completeness, we mention
that the search space of the tests of this work is composed
by the valid values of the main parameters of the RSS
positioning algorithm used. Such parameters are the number

of closest APs included in the position estimation calculation,
the memory size of the buffer storing the latest RSS, as well
as parameters of the filtering used to smooth the sequence of
position estimates. Regardless of the specific algorithm and its
parameters, in the following section we proceed with a generic
exemplification of the proposed methodology, focusing on the
tester’s selection options regarding the objectives to be used,
and the relevant analysis in the objective space.

V. EXPERIMENTAL RESULTS

In this section, the results of a variety of tests exemplifying
the proposed methodology are presented. In each test, more
than one objectives are set to be satisfied. The differences
among the objectives can be the different evaluation metrics
chosen to evaluate the system, the different recorded data
that the offline algorithms utilize, or a combination of them.
Concerning the evaluation metrics, usual statistics of the
estimation error are used (mean, median, percentiles, etc.).
Moreover, a metric concerning the smoothness of the estimated
trajectory was desired. As such, the Travelled Distance Ratio
(TDR), which was discussed here [2], is used. In short, the
TDR is equal to the ratio of the length of the estimated path
over the length of the ground truth path. A value close to 1
indicates a smooth trajectory, while a higher value implies that
the trajectory suffers from abrupt changes.

Fig. 3. The 10 first Pareto Ranks of a 2-objective problem.

As a first simple exemplification of our method we present
a problem with two objectives. The two objectives are two
evaluation metrics: the mean error and the TDR. The recorded
data used for both objectives are the same, recorded at an
underground parking environment of size 120m by 40m. In
Figure 3, the first ten Pareto Ranks are presented in the
objective space of the problem. The Pareto Front, is the set
of solutions in the first rank. We see in this plot that the
solution of the first two ranks are quite distinguishable from
the next ranks, thought really close to each other. The leftmost
solutions of Figure 3 have a mean error of 3.2− 3.3m, while
the solutions of the third rank are mostly above 3.5m. At the



Fig. 4. The 10 first Pareto Ranks of a 3-objective problem.

same time, all TDR values in the range of 1 − 1.1 can be
considered as very satisfactory, setting the leftmost solutions
of the Pareto Front eligible and appealing for the decision
maker. Having this result, the DM may either choose from the
front based on the objective values and the relevant preferences
or repeat the test adding more objectives, to obtain a more
holistic view before selecting a solution.

For some applications, apart from the mean performance
of the system, the worst case performance might also be
crucial. For this reason, a third objective is added to the
previous test: the 95th percentile of error. This objective adds
to the calculation the notion of a ‘worst case performance’. In
Figure 4, the fronts of this 3-objective problem are presented.
It is visually clear that two of the objectives (mean, 95th
percentile) seem to have a strong correlation. Nevertheless,
the addition of this objective can help the decision maker to
potentially reject some solutions. For instance, those members
of the Pareto Front that seem to have a significantly higher
error at the 95th percentile (> 9m) than others (∼ 6m), could
be removed by the DM from the set of candidate solutions,
simplifying his decision making.

Another interesting task is to comparatively evaluate the per-
formance of the parameter settings in different environments.
In Figure 5, we see the mean positioning error in three test
environments: an underground parking of ∼ 4800m2 with a
sparse access point (AP) deployment, an office environment
of a ∼ 450m2 common space and a house environment of
∼ 60m2. The elements of rank 1 appear spread out in the plot.
Using the Sum of ranking at each objective method discussed
in Subsection IV-A, the rightmost solution of Figure 5 is
proposed, which achieves (3.2m, 2.1m, 1.4m) in the three
respective objectives, having the lowest sum (equal to 18)
among the solutions of the Pareto Front. Moreover, the linear
combination of objectives could be used in this case, as the
objectives are commensurable. Using a simple average of the

three objective scores as a unique objective, the same solution
results having the lowest value among the solutions of the
Pareto Front. It is noteworthy that the same solution, meaning
the same parameter setting, appears in the Pareto Front of the
two previous problems (Figures 3 and 4).

Fig. 5. The 6 first Pareto Ranks of the mean error at 3 deployments.

Several tests were executed either by combining pairs and
triads of objectives, or by combining many objectives. For
instance, three different devices were used to record data at
the environment of the underground parking. The mean error
values of the three objectives formed another test that was
performed. In Figure 6, the objective space of this problem is
presented, along with the ten first Pareto ranks. The solutions,
especially those of the Pareto Front, are much less spread out
in the objective space, when compared with Figure 5, as the
recordings of three devices in the same environment seem to
be less contradictory objectives, comparing to recordings at
three environments of very different characteristics.

When combining all the objectives of all previous tests
in a single problem, the nature of the problem changes
drastically. In problems with more than three dimensions, a
graphical representation is possible only for a subspace of



Fig. 6. The 10 first Pareto Ranks of the mean error with 3 devices.

the multidimensional objective space, not allowing a reliable
visual overview to the decision maker. Moreover, the number
of solutions appearing in the Pareto Front increase drastically.
The four problems of Figures 3-6, have 10, 13, 17 and 8
members in their Pareto Fronts respectively. On the other hand,
when running the problem with 18 objectives, produced by
combining 3 evaluation metrics (mean, 95th percentile, TDR)
with 6 recordings (3 devices at the parking, 2 at the office and
1 at the house environment) the results are not really helpful
for the DM. Out of 1125 possible solutions defined as the
search space of the problem, 843 appear in the Pareto Front,
offering no significant information to the DM. Similarly, the
problem with 6 objectives (the mean error of the 6 recordings)
has 72 members in its Pareto Front.

On the other hand, a solution that appears in the Pareto
Fronts of all (or of most of the) smaller tested problems
that have 2 − 3 objectives, can be a solution to be chosen,
as it efficiently handles the trade-off. For instance, there is
only one solution appearing in the Pareto Fronts of all four
problems previously presented (Figures 3-6). This fact sets this
parameter setting as a perfect candidate for the default tuning
of the tested system.

VI. CONCLUSIONS AND FUTURE WORK

In this work, a complete formal workflow of a tuning
methodology for indoor positioning systems has been pre-
sented. The first step to be performed is the recording of the
required data (spatiotemporal ground truth and timestamped
raw signal receptions) at the test environment. Having col-
lected those data, the tester can make consistent comparisons
of different parameter settings, by running offline positioning
algorithms. In this way, the tester is exempt from the tedious
task of traversing repeatedly the test environment for testing
different settings of the system. In addition, contrary to the
repetitive online testing procedure where the conditions of the
test cannot be fully controlled (the noise level, the environment
conditions, etc.), running offline positioning algorithms over
the same recorded data guarantees the consistency of the tests.

The innovative step forward of this work is the ability
to combine many objectives to be simultaneously optimized,
offered by the introduction of multiobjective optimization
techniques. With this approach, multiple evaluation metrics,

several recordings at the same environment, different envi-
ronments or devices, and other kinds of multiplicities can be
combined in the effort of finding a more holistic evaluation
for optimizing the system’s performance.

Data recordings collected from three test environments with
different devices, have been used to centrally perform tests
and extract information in a formal way regarding the optimal
parameter selection for an IPS under test. In the absence
of methodologies such as the proposed one, this procedure
is usually simplified in being the outcome of an empirical
parameter selection by the system’s expert. With the proposed
methodology, new algorithms can be quickly tuned based on
existing recorded data, while the empirically selected default
parameter setting of existing algorithms can be evaluated and
potentially improved. The trade-off of different evaluation
metrics can be efficiently handled by selecting solutions from
the resulting Pareto Optimal Set. Similarly, trade-offs among
different environments or devices used can be also efficiently
addressed.

To facilitate the decision maker in choosing a unique
solution, we have tested two support systems: the linear
combination of objectives for commensurable objectives and
the Sum of ranking at each objective. When combining a large
number of objectives (> 4) in a single problem, the number
of solutions appearing in the Pareto Optimal Set increases
significantly. To simplify such cases, the big problem can be
decomposed to smaller ones, with fewer objectives each. The
final selection can be done by choosing solutions that appear
in the Pareto Fronts of all (or most) smaller problems.

In the future, we intent to systematically collect data from
all new environments where we deploy positioning systems
and further investigate efficient ways of handling ‘big data’ in
a unique problem. Moreover, we are investigating the potential
use of crowdsourced data, and evaluating the feasibility of
utilizing existing crowdsourcing platforms [16], [32].

So far, we have been collecting in our recordings all type
of data that could be useful for a hybrid provider. Apart
from the BLE receptions utilized for the tests of this work,
sensor data (accelerometer, barometer, light sensor, etc.), as
well as WiFi and GPS recordings were stored. One future
goal is to integrate hybrid providers in the calculations of
the multiobjective optimization module of the GpmStudio
platform.

In problems that the whole search space can be searched in
feasible time frames, the Linear combination of objectives and
the Pareto Optimal Set can be calculated by a full spanning
of the whole search space. For very big problems, heuristic
approaches come to address the issues of computational com-
plexity. The commonly used NSGA-II algorithm [22] is imple-
mented in GpmSudio, with a view to address computationally
challenging scenarios. All tests performed in this work had a
computational complexity that sets the full search of the search
space to be feasible. Nevertheless, as the search space may
increase in the future with the addition of hybrid algorithms,
state of the art heuristic methods should prove to be efficient
in providing good approximations of the Pareto Optimal Set.



REFERENCES

[1] S. Adler, S. Schmitt, K. Wolter, and M. Kyas, “A survey of experimental
evaluation in indoor localization research,” in Indoor Positioning and
Indoor Navigation (IPIN), 2015 International Conference on, Oct 2015,
pp. 1–10.

[2] C. Martı́nez de la Osa , G. G. Anagnostopoulos, N. Togneri, M. Deriaz,
and D. Konstantas, “Positioning evaluation and ground truth definition
for real life use cases,” in Indoor Positioning and Indoor Navigation
(IPIN), 2016 International Conference on, Oct 2016, pp. 1–7.

[3] F. Lemic, V. Handziski, A. Wolisz, T. Constambeys, C. Laoudias,
S. Adler, S. Schmitt, and Y. Yang, “Experimental evaluation of RF-
based indoor localization algorithms under RF interference,” in 2015
International Conference on Location and GNSS (ICL-GNSS), June
2015, pp. 1–8.
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