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Abstract—Sensing the presence of people in indoor spaces
allows smart systems to be aware of and responsive to the
occupants, and paves the way for a wide range of applications.
In this paper, we show how the reflection patterns of ultrasonic
signals can be leveraged to detect the presence of still persons.
We propose the use of supervised learning over segmented
reflection patterns, and prove that this method is capable of
detecting minute variations in the environment's response. The
experimental evaluation of the proposed method in an office and
a residential environment shows that it achieves a high presence
sensing accuracy in the case of low signal-to-noise ratio (SNR),
and a perfect accuracy in the case of high SNR, even in the case
of non line-of-sight. Among the different tested classifiers, we
found that the linear Support Vector Machine (SVM) achieves
the best performance, yielding a presence detection accuracy of
84.3%-98.4% for low SNR, and 100% for high SNR, in the tested
environments.

Keywords—Ultrasound; presence sensing; supervised learning;
reflection pattern

I. INTRODUCTION

Sensing the presence of people represents an important input
of smart systems, allowing them to be seamlessly aware of
the occupants and responsive to their needs, thus promoting
their comfort. Knowing the occupancy state of indoor spaces
provides useful context information that paves the way for
numerous applications, ranging from lighting control, Heating,
Ventilation, Air Conditioning (HVAC) systems, to assisted
living and security systems.

Presence information could be obtained using mobile lo-
calization techniques. With this approach, people would be
asked to carry on a mobile device all the time, while a central
system keeps track of the location of each user. Many possible
technologies could be used for indoor mobile localization,
which have been extensively studied and characterized in the
literature. In this context, localization technologies include
among others the use of WiFi infrastructure [1], [2], Bluetooth
low energy beacons [3], [4], ultrasound systems [5], [6], [7],
ultra-wide-band technology [8], [9], etc. Mobile localization
techniques are able to achieve a high precision, and would
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allow the systems to know the exact number and location
of occupants, assuming that each one of them is equipped
with a mobile device. However, requiring the occupants to
carry a mobile device all the time might become inconvenient,
presenting a source of discomfort. Also, people could avoid
carrying the mobile device, making some systems purposeless,
like in the case of security systems for example.

Motion sensing is another way of inferring the presence
of people in indoor environments. While several technologies
are used for developing motion sensors, Passive Infrared (PIR)
and ultrasound motion sensors remain the most prevalent [10].
PIR sensors are widely used to detect human motion, by
responding to a change in the temperature pattern across the
field of view of the sensor [11]. Different works have focused
on algorithms to enhance the performance of PIR sensors and
the processing of their output [12], [13], [14]. PIR sensors are
attractive because of their low power consumption. However,
the main drawbacks of PIR sensors are their limited accuracy
and sensitivity to changes in the environment (sunlight, heating
effect, etc.), as well as their limitation to work only in line-of-
sight (LOS) conditions. On the other hand, ultrasonic motion
sensors are based on non-audible acoustic signals, and sense
human motions inside a certain area based on the Doppler
effect principle [15], [16], [17]. These sensors are helpful
to obtain fine information about the direction of movements
and speed of occupants. They are more accurate than PIR
sensors [10], and they are capable of sensing motions even
from behind obstacles, due to the inherent nature of ultrasonic
signals propagation. Human motions can also be detected with
the use of RF-signals. In their work, Adib et al. [18] use
WiFi signals to track human motions behind a wall and locate
his position using a MIMO antenna array. However, a major
limitation of motion sensors is the fact that they only detect
persons when they are moving, while a person who remains
still (sitting, sleeping, etc.) cannot be detected.

In this work, we exploit the use of reflection patterns of
ultrasonic signals in order to infer the presence of still persons
in indoor spaces. The reflection pattern is compared against
a reference one in order to determine a similarity index.
We argue that the similarity index evaluated over the whole
reflection pattern may not be the best factor to differentiate
the case of an occupied space from that of a vacant one.



To cope with this issue, we propose evaluating the similarity
indices over segments of the reflection patterns, so that a set of
features characterizing a certain frame is formed. Supervised
learning is used to train a classification model that is valid for
mapping an unknown frame into a vacant or occupied state. We
have tested the proposed method in an office and a residential
environment, and the results show a high presence sensing
accuracy in case of low signal-to-noise ratio (SNR), and a
perfect accuracy in case of high SNR, even in the case of non
line-of-sight. Among the different tested classifiers, we found
that the linear SVM achieves the best performance.

The rest of this paper is organized as follows. First, Sec-
tion II presents a review of the related work in the literature.
Section III explains in detail our proposed method for presence
sensing. In Section IV we present the experimental evaluation
of the method. Finally, we state the conclusion and future work
in Sections V and VI respectively.

II. RELATED WORK

Some previous works suggested the use of ultrasonic rang-
ing sensors for presence sensing [19], [20], [21]. These sensors
use the time-of-flight of ultrasonic signals to determine the
distance to a given target. Commercial models of these sensors
are characterized in general by a narrow beam angle. In [19],
an ultrasonic array is used along with PIR sensors to track peo-
ple in a multi-residential home. The ultrasonic array consists
of ultrasonic ranging sensors which track a person's height,
using this feature as a unique bio-feature. Another work [20]
proposes the use of a hidden Markov model based on the
output of ultrasonic ranging sensors, in order to determine the
presence of a user. In a similar work [21], these sensors are
used to sense the presence of a person at his desk with a high
accuracy.

Caicedo et al. [22] used the angle-of-arrival of a transmitted
ultrasonic signal to locate a person inside a room. In their
designed system, they consider the case of multipath propa-
gation, but assume, however, that there is direct LOS between
the system and the subject person, which may not be always
the case. Bordoy et al. [23] locate a person using a single
ultrasonic transceiver, based on the assumption that a human
body moves slightly due to his breathing. They achieve a low
error localization in a 2-dimensional space, but require a direct
LOS with the located person as well.

The main contribution of our paper, is the proposed method
in which the reflection patterns of the ultrasonic signals are
used to sense the presence of still persons. The method is based
on segmenting the reflection patterns and evaluating similarity
indices over these segments to form feature vectors which
can be used for classification. By segmenting the reflection
patterns, the proposed method ensures a better perception of
the environment as seen by the system, hence achieving a finer
accuracy especially in the case of weak received signals. This
way, the position of the occupant and the obstruction level in
the environment have little impact over the presence detection
rate.

III. PROPOSED PRESENCE SENSING METHOD

A. Concept

Detecting the presence of a person in the indoor environ-
ment is based on emitting an ultrasonic signal and observing
the reflected signals. A co-located transmitter and receiver take
care of the transmission and recording of the ultrasonic signals,
while a processor is responsible for the signal processing part
and determines the presence state.

The method is based on the concept that each environment
is characterized by a specific response to the emitted ultrasonic
signal. When a person is present in this environment, she will
cause some variations to the environment's response which will
be reflected in the received ultrasonic signal. The aim of our
method is to spot any variations in the environment's response
with a high accuracy.

The emitted ultrasound is a short-time signal in the non-
audible frequency range (above 20kHz). We have investigated
different signal types, and preliminary tests showed that a
chirp signal is more immune to interference, as compared to a
sinusoidal signal. Therefore, the emitted ultrasonic signal x[n]
which we use in our presence sensing method is a chirp signal,
whose discrete-time representation is:

x[n] = sin

(
2π(

f0
fs

)n+
q

2
(
n

fs
)2
)

for 0 ≤ n ≤ bfs × Tchirpc
(1)

where fs is the sampling rate, Tchirp is the chirp duration,
q = (f1−f0)/2, f0 and f1 are the lower and upper frequency
limits of the chirp respectively.

B. Reflection Pattern

Each indoor environment is characterized by a given re-
sponse. This response depends on several parameters, like
the environment's dimensions, boundaries, the position of
obstacles, furniture, etc. We denote the environment's impulse
response by h[n], which defines the multipath propagation of
the emitted signal's reflections, caused by the obstacles and
environment's boundaries. It can be written as:

h[n] =

M−1∑
m=0

ame
jφmδ(n− τm) (2)

where am, φm, and τm represent the signal attenuation,
phase difference, and time delay of the mth multipath signal
respectively. Note that m = 0 is the direct propagation of the
emitted signal, between the transmitter and receiver.

We call a reflection pattern, the result of the environment's
response to the emitted ultrasonic signal. When the ultrasonic
signal x[n] is emitted in the environment, the received signal
y[n] is the convolution of the transmitted signal x[n] with the
discrete-time version of the room impulse response h[n], plus
an additive noise ν[n] assumed to be white Gaussian:

y[n] = x[n] ∗ h[n] + ν[n] (3)

The assumed noise is used to model the random noise caused
by uncontrolled sources (ambient noise in the environment,
noise introduced by the receiver, etc.).



Figure 1. Obtaining the reflection pattern.

The reflection pattern R[n] is obtained by applying a
matched filter to the received signal y[n], as depicted in
Figure 1.

C. Comparing Reflection Patterns

The presence of a person in an indoor environment causes
a modification in its response, as compared to the case where
this environment is vacant. Instead of calculating a numerical
expression of the environment's response for each frame, we
statistically process the reflection patterns in order to spot the
variations in the environment response.

We call Rref [n] the reference reflection pattern, which
corresponds to the case where the environment is vacant. A
certain reflection pattern R[n] with unknown occupancy state
is compared to the reference Rref [n] in order to infer whether
the indoor environment is vacant or occupied by a person. The
comparison of two reflection patterns is achieved by cross-
correlation, to determine the similarity between them. We
denote by similarity index, the maximum value of the cross-
correlation result in absolute value:

similarity index = max|cross-correlation(Rref ,R)| (4)

The similarity index is a value ranging between 0 and 1. A
high index (close to 1) shows high similarity of the compared
reflection patterns meaning that the environment is vacant. On
the other hand, a low similarity index indicates some variations
in the environment response, and therefore the environment
has been occupied.

The reference reflection pattern Rref [n] is obtained when
the environment is vacant. To reduce the effect of noise when
calculating Rref [n], we use multiple recorded frames instead
of a single one. Assuming that the noise is additive zero-
mean Gaussian, it can be mitigated by taking the average of
a relatively large number L of reflection patterns:

Rref [n] =
1

L

L∑
k=1

Rref,k[n] (5)

D. Signal Propagation

When the ultrasonic signal x[n] is emitted in the indoor
environment, it propagates in a semispherical pattern. The
direct line-of-sight copy of the signal is the first one to be
picked up by the receiver as it travels the shortest distance.
Subsequent multipath copies of the signal scattered by dif-
ferent objects, obstacles, and enivronment's boundaries are
received at later time instants. After a certain time duration
Ttotal, the propagated signal vanishes (becomes too weak
to be picked up by the receiver). In Figure 2, we show

an indicative example of the signal propagation in the case
where the environment is vacant, and when it is occupied.
This example aims to show only the concept of diversity of
multipath propagation, rather than the actual exact propagation
obeying physics laws.

The transmitted ultrasonic signal follows a pathloss model,
which means that the more distance it travels, the lower its
amplitude becomes. Therefore, the reflected copies of the
signal caused by close objects are stronger than those caused
by farther ones. If we denote by m = 0 the direct propagation
of the emitted signal, between the transmitter and receiver
(corresponding to propagation time τ0), by m = 1 the first
received multipath copy (scattered from the closest object),
and so on, the last detected multipath signal corresponds to
m = M . Since the traveled distance is directly proportional
to the propagation time, if:

τ0 < τ1 < ... < τM (6)

then the corresponding amplitudes of the received multipath
copies observed in the reflection pattern R[n] are such that:

a0 > a1 > ... > aM (7)

E. Segmented Reflection Patterns

In the case where the environment is vacant, the impulse
response is:

href [n] =

M−1∑
m=0

ame
jφmδ(n− τm)

= a0e
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(8)

On the other hand, when the environment is occupied, the
impulse response will be altered:

hoccupied[n] =
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While the multipath signals scattered from close objects and
obstacles will not be altered, the occupant will cause some
disturbance in the subsequent multipaths. If p corresponds to
the first multipath copy that is affected by the presence of the
occupant, then the first multipath signals (m = 0, . . . , p − 1)
are unchanged as they do not reach the body of the occupant.



(a) Vacant environment (b) Occupied environment

Figure 2. Indicative example showing the difference of the emitted signal’s multipath propagation, in the cases of (a) vacant and (b) occupied environments.

Therefore the impulse response of the occupied environment
can be written as:

hoccupied[n] =

M
′
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The first unaltered multipath copies (m = 0, . . . , p − 1) of
the signal are much stronger in amplitude than the subsequent
copies (m = p, . . . ,M

′ − 1), as explained in the previous
subsection. Therefore, the strong reflections from close objects
and obstacles might mask the presence of the occupant, espe-
cially when he is not too close to the transmitter, or when she
is been camouflaged by the furniture. In this case, the occupant
will cause little variation to the reflection pattern, which will
be masked by the strong reflections in the calculation of the
similarity index (Equation 4). Hence, relying on the single
similarity index evaluated over the whole reflection pattern,
may not be decisive to detect presence, especially when the
SNR is not high enough.

To illustrate the problem, we show in Figure 3 the values of
the similarity index evaluated for some frames corresponding
to a vacant environment, then for some other frames with the
presence of an occupant. One can observe that differentiating
the two classes of frames cannot be achieved by a simple
threshold-based boundary.

To cope with this problem, we propose to extend the
evaluation of the similarity index of Equation 4, and calcu-
late it iteratively over segments of the reflection pattern. By
discarding a certain segment from the beginning of the vector,
corresponding to a duration of Tsegment, all the reflections
caused by the obstacles in the range of a propagation distance
equivalent to Tsegment are ignored. In this case, if the little

Figure 3. Similarity indices of frames corresponding respectively to vacant
and occupied environment.

variations caused by the occupant are detected in the remaining
vector, they will not be masked by the stronger reflected
signals. Following this segmentation method, the similarity
index is evaluated subsequently over multiple segmented re-
flection patterns, until the end of the reflection pattern vector
is reached. This way, the ith similarity index is obtained by
discarding i segments from the reflection pattern vectors:

similarity index [i] = max|cross-correlation(Rref,i ,Ri)|
(11)

where Ri (respectively Rref,i) is the reflection pattern vector
R (respectively Rref ) with i segments discarded:

Ri = R{k, k + 1, . . . , N} (12)

with k = di×Tsegment× fse, and N is the total length of R.
Figure 4 illustrates the evaluation of the similarity indices

over segmented reflection patterns. In our design we use a



Figure 4. Similarity indices evaluated over segmented reflection patterns.

Figure 5. Segmenting the reflection pattern is equivalent to dividing the
environment into segmented spaces (iteratively discarding the first i

segments).

segment length Tsegment=1.5ms, which approximately corre-
sponds to a propagation distance of 0.5m.

Segmenting the reflection pattern into smaller chunks is
equivalent to dividing the environment into segmented spaces,
thus ensuring a finer perception of the environment, as seen
by the system. Figure 5 illustrates this concept. However, due
to the nature of multipath propagation, the segmented spaces
in reality are not as uniform as shown in the figure, but rather
have more complex shapes.

F. Classification

The similarity indices evaluated over segmented reflection
patterns, as described in the previous section, are used as
features to form a feature vector used for classification. For
each frame, the global similarity index is evaluated as in
Equation 4, and the rest of similarity indices as in Equation 11.

The feature vector is then formed as follows:

Vfeatures =


global similarity index
similarity index [1]
similarity index [2]

...
similarity index [Nsegments]

 (13)

where Nsegments = Ttotal/Tsegment.
Supervised learning is used in order to classify the feature

vectors. The pattern classification model is trained using a set
of labeled frames. These frames correspond to cases where
the environment is vacant and where it is occupied by a
person. Once the correct model is obtained, it can be used
to classify any frame with unknown occupancy state, in order
to determine whether the environment is vacant or occupied.

IV. EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation of
our proposed method. We start by showing the set-up used,
then we explain the followed procedure to obtain the dataset
and finally we present the results.

A. Set-up

The transmitter and receiver shall support ultrasonic fre-
quencies. Commercial speakers and microphones are manu-
factured to support audible sounds, but they also support a tiny
frequency bandwidth in the non-audible range. At a sampling
frequency of 44.1kHz, commercial speakers and microphones
support frequencies up to 22.05kHz according to Nyquist
criterion, therefore the ultrasonic interval 20-22kHz is covered.
In our tests, we use one commercial speaker as ultrasonic
transmitter and a microphone as receiver (both of Logitech
brand), which are connected to a PC used for the signal
processing. While we opted for such components to complete
the tests with convenience, it is worth noting that the same
procedure could be reproduced using dedicated ultrasonic



Figure 6. Dataset's frames distribution.

transducers, connected to a microprocessor that implements
the signal processing algorithms.

The transmitted ultrasonic signal is a 10ms chirp signal
with limit frequencies of 20-21kHz. The received signal is
recorded with a total duration of Ttotal=0.3sec, corresponding
to maximum propagation distance of around 100m.

B. Dataset

The system is placed inside an indoor environment and the
reference reflection pattern is obtained from the average of
L = 100 frames. In order to form the dataset, a large number
of reflection patterns is collected. These reflection patterns cor-
respond to frames where the environment is vacant, and others
where it is occupied by a person. The occupied environment
frames are recorded with different occupancy states, trying to
cover the maximum number of different cases: person close to
the system (<1m), person at a moderate distance (few meters),
person far from the system (∼10m where applicable), and
person lying down. In all the cases except from the last one,
the person was asked to sit down for half of the recordings,
and stand up for the rest.

For each frame, the feature vector comprising the similarity
indices with respect to the reference reflection pattern, is
calculated as described in the previous subsection. All the
feature vectors, along with the corresponding labels, are then
combined to form the dataset. The dataset is formed from 1000
frames for the vacant case, and another 1000 frames for the
occupied one. Figure 6 shows the distribution of the frames
forming the dataset.

The described procedure is repeated for the following envi-
ronments:

Figure 8. Similarity indices over segmented reflection patterns for vacant
(frames 1-1000) and occupied environment (frames 1001-2000), case of

high SNR, Room A, LOS.

• Room A: An office room of dimensions 7.8×6m. The
first time the system was placed with a clear LOS, and the
second time it was placed behind an obstacle, blocking
the LOS.

• Room B: A residential room of dimensions 5.2×3.6m.
The process was also repeated for LOS and NLOS.

In Figure 7, we show a map of the tests' environments and
different positions of the occupant during the recordings.

In order to investigate the effect of the SNR over the perfor-
mance. We repeat the procedure for low and high ultrasound
amplitude level, resulting in two different SNR values for the
received signal. The SNR is calculated by taking the ratio of
the amplitude of the first received signal copy to the maximum
noise level:
• Low SNR: The measured SNR is around 3dB.
• High SNR: The measured SNR is around 10dB.
In Figure 8, we consider one of the test cases, and we visu-

alize the evaluated similarity indices over segmented reflection
patterns, which form the feature vectors.

C. Classification Results

The pattern classification model is trained and validated
using a 5-fold cross validation over the dataset. We compare
the results of several machine learning algorithms, namely
complex decision tree, Linear Discriminant Analysis (LDA),
logistic regression, linear Support Vector Machine (SVM), and
weighted K-Nearest Neighbors (KNN).

We assess the performance of each of the models using the
detection accuracy, which is the rate of true positives (occupied
frames correctly classified), and the false positive rate (vacant
frames classified as occupied). Table I shows the performance
of each of the models in the case of low SNR, and Table II
shows the performance for the case of high SNR.

In the case of low SNR, we observe that overall the SVM
classification model has the best performance considering the
detection accuracy and false positive rate together. Nonethe-
less, the decision tree and logistic regression models achieve
also a comparable performance to that of SVM. However, it



Figure 7. Tests' scenarios showing the occupant's position for the occupied frames: (1) close to the transmitter (standing/sitting), (2) at moderate distance
(standing/sitting), (3) far from the system (standing/sitting), and (4) lying down. Obstacles are placed to simulate the NLOS case, and removed for LOS case

Table I. Performance (Detection accuracy — False positives) of the proposed method in the case of low SNR

Indoor Environment Decision Tree LDA Logistic Regression SVM KNN
#1: Room A, LOS 94% — 6.5 % 91% — 21.3% 93.4% — 7.4% 94.4% — 4.9% 83.1% — 28.1%
#2: Room A, NLOS 78% — 21.4% 71.8% — 35% 84.2% — 14.7% 84.3% — 10% 69.7% — 31.1%
#3: Room B, LOS 98.5% — 1.8% 82.2% — 13.3% 98.4% — 0.6% 98.4% — 1.3% 74% — 11.7%
#4: Room B, NLOS 89.1% — 9.6% 76.6% — 19% 90.7% — 12.9% 85.9% — 3.1% 63.7% — 25.6%

Table II. Performance (Detection accuracy — False positives) of the proposed method in the case of high SNR

Indoor Environment Decision Tree LDA Logistic Regression SVM KNN
#1: Room A, LOS 100% — 0% 100% — 0% 100% — 0% 100% — 0% 100% — 0%
#2: Room A, NLOS 100% — 0% 100% — 0% 100% — 0% 100% — 0% 100% — 0%
#3: Room B, LOS 100% — 0% 100% — 0% 100% — 0% 100% — 0% 100% — 0%
#4: Room B, NLOS 99.8% — 0.3% 98.4% — 0% 100% — 0% 100% — 0% 99.8% — 0.1%

can be deduced that the LDA and KNN are not valid models
for the considered problem, since they result in a low accuracy
and/or high false positive rate. In general, it can be seen that
the proposed method works with non line-of-sight settings,
though the performance is slightly inferior to that of the clear
line-of-sight.

Finally, in the case of high SNR, our proposed method
impressively achieves a perfect accuracy with a zero false
positive rate in almost all classification models. This can be
explained by the fact that a high SNR allows the detection
of minute variations in the environment's response, while the
proposed method guarantees that these variations are fairly
spotted.

D. Remarks

During the experiments we focused on still presence detec-
tion. The user was asked to remain still during the recordings.
However, similar results are expected to be obtained in case
she were moving, since in this case she will also cause
variations to the environment's response. But since the case
of detecting a moving person was already addressed in our
previous work [15], we limited our experiments to the case of
still person sensing.

Given the inherent nature of ultrasonic signals, they are
mostly limited by boundaries of indoor spaces (walls, doors,

etc.), hence the presented system can sense the presence on
a room-scale. In order to cover a complete indoor space, like
the whole house or an office building, it is sufficient to place
one sensing unit in each room.

V. CONCLUSION

In this paper, we showed how the reflection patterns of
ultrasonic signals can be leveraged to infer the presence of still
persons in indoor spaces. We propose to evaluate similarity
indices over segmented reflection patterns, in order to form a
set of features that can be used for classification into vacant
and occupied cases. This method allows to detect the presence
of people even when they are completely still, while the
absence of line-of-sight and the occupant's position have little
impact over the system's performance. The proposed method
was tested and proved to achieve a remarkable accuracy with
low SNR, and perfect accuracy with high SNR. The linear
SVM is found to achieve the best performance among the
different tested classifiers.

Since our proposed method performs well for low levels of
SNR, it is suitable to use for applications with low power
consumption requirements. A sensor developed to use this
method could operate for an extended time using a limited
energy source.



VI. FUTURE WORK

The reference reflection pattern was obtained manually by
making sure the environment is vacant before recording. A
future plan is to develop a method to make this process
automatic, so that the system detects automatically when the
environment is vacant, and calculates the reference reflection
pattern accordingly. A possible way to accomplish this, is to
observe the environment for over given duration, say one or
several hours, and check if an activity is detected. Since a
person is unlikely to remain still for several hours, the absence
of activity would represent the condition for the system to re-
calibrate. Additional measures are to be investigated in order
to rapidly adapt to small changes in the environment (like
moving furniture for example).

The presented system is capable of detecting the binary
occupancy state (vacant or occupied). As a future step, we
intend to examine the possibility of determining the exact
location of the occupant especially in non line-of-sight based
on the reflection pattern. Also, one could think of using the
reflection pattern to determine the occupant's posture and
activity (standing, sitting, sleeping). This way, the delivered
services could be customized accordingly, like for example
switching the lights off when the person goes to sleep, or
changing the heating level when the person gets up.

While in our experiments the occupancy condition of the
environment was considered with one occupant, the method
can also detect if the environment is occupied in the presence
of multiple occupants, since they would alter the environment's
response. However, a future step is to investigate whether the
reflection patterns of the signals could be used to infer the
people's count in a certain area.
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