
Gait Recognition with Smart Devices Assisting
Postoperative Rehabilitation in a Clinical Setting

Athanasios I. Kyritsis∗, Geoffrey Willems†, Michel Deriaz∗, and Dimitri Konstantas∗
∗Information Science Institute, GSEM/CUI, University of Geneva, Geneva, Switzerland

†Physiotherapy Center, Hirslanden Clinique La Colline, Geneva, Switzerland
Email: {athanasios.kyritsis,michel.deriaz, dimitri.konstantas}@unige.ch,

{geoffrey.willems}@lacolline.ch

Abstract—Postoperative rehabilitation is a vital program that
re-establishes joint motion and strengthens the muscles around
the joint after an orthopedic surgery. This kind of rehabilita-
tion is led by physiotherapists who assess each situation and
prescribe appropriate exercises. Modern smart devices have
affected every aspect of human life. Newly developed technologies
have disrupted the way various industries operate, including
the healthcare one. Extensive research has been carried out
on how smartphone inertial sensors can be used for activity
recognition. However, there are very few studies on systems that
monitor patients and detect different gait patterns in order to
assist the work of physiotherapists during the said rehabilitation
phase, even outside the time-limited physiotherapy sessions, and
therefore literature on this topic is still in its infancy. In this
paper, we are presenting a gait recognition system that was
developed to detect different gait patterns including walking
with crutches with various levels of weight-bearing, walking with
different frames, limping and walking normally. The proposed
system was trained, tested and validated with data of people
who have undergone lower body orthopedic surgery, recorded by
Hirslanden Clinique La Colline, an orthopedic clinic in Geneva,
Switzerland. A gait detection accuracy of 94.9% was achieved
among nine different gait classes, as these were labeled by
professional physiotherapists.

Keywords—Activity recognition, feature extraction, machine
learning, pattern recognition, smart devices, wearable computers,
wearable sensors.

I. INTRODUCTION AND RELATED WORK

The role of physiotherapy following an orthopedic surgery
is to assist the patient return to normal activities of daily living.
Doctors and physiotherapists help the patient achieve this by
prescribing suitable exercises that will establish the rehabilita-
tion goals. There is a significant body of evidence coming from
systematic reviews and controlled trials that dictate the best
practices in physiotherapy [1]. Proper evaluation guarantees
the effectiveness of physiotherapy [2] for a wide variety of
medical conditions, including recovering after a lower body
orthopedic operation.

Gait refers to a person’s manner of walking and is influenced
by age, personality, mood and sociocultural factors [3]. Several
reasons including a lower body operation may lead to either
temporary or permanent gait disorders. Any such disorder is
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typically thoroughly investigated by the physiotherapist who
then suggests a specific treatment to the patient. There are
various tools at the disposal of the physiotherapists, and many
robotic solutions are being created in order to help people
walk or to act as an aid during a physiotherapy session
[4]. These robot-assisted gait solutions may be used as an
excellent companion to conventional therapy and improve the
independence and the gait capacity of the patient [5].

Activity recognition (AR) has emerged as a key research
domain in computer science. The approaches for AR can be
roughly divided into two categories: the camera-based ones
[6], where gestures and activities are inferred from still images
or videos using computer vision techniques, and the inertial
sensor-based ones, where one or more body-worn sensors are
used [7]. Any AR system includes many variables such as
the definition of the classes of interest, the experiment design,
the sensors, the data handling procedure and the performance
evaluation. These variable components can be implemented
in a variety of ways [8] having an impact on the overall
performance of the system.

The increased availability of inertial sensors due to the
omnipresence of smartphones and particularly smartwatches
has enabled AR to become an essential context-awareness
tool for mobile and ubiquitous computing. Sensors in modern
consumer electronics provide reasonably accurate recordings
when compared to research monitors [9]. This is why these
devices prove to have clinical utility, although they continue
to be underutilized in the healthcare industry [10].

Besides recognizing daily activities, inertial sensors have
been used in gait pattern analysis. In most studies accelerom-
eters are attached to the legs or feet, but gait patterns can
be also extracted from data recorded from sensors attached
to the upper body [11]. Common smartphone accelerometers
have been used to detect different gait events [12]. In a similar
manner, smartwatches that contain inertial sensors can be used
for gait recognition. Unlike smartphones, smartwatches tend
to be worn in the same location and the same orientation
and can be even used for gait-based biometrics based on the
accelerometer and the gyroscope data [13].

Various recovery programs have been developed to improve
the recovery time after surgery [14]. Wireless monitoring of
mobility after a major operation has the potential of improving
services provided by healthcare professionals [15]. With the



TABLE I
CLASSIFICATION OF GAIT PATTERNS FOR RECOGNITION

Category Class

No aid Limping
Walking

Crutches

Unladen
Rolled out

Laden 10kg
Laden 20kg

According to pain

Frame Without wheels
With wheels

proposed system, we incorporate smartwatches into the routine
care of patients who have undergone a lower body operation
in order to monitor their gait patterns. Doing so will enhance
the patient-physiotherapist relationship, respect the patients’
autonomy regarding their healthcare and provide a remote
monitoring solution to the physiotherapist in charge.

The rest of the paper is organized as follows. In Section
II we discuss the system that we have developed. We present
the data acquisition tools, the features that we engineer for
machine learning and the classifiers that we train. In Section
III we present the experiment that we have conducted and we
evaluate the performance of the overall system. Finally, we
conclude our work in Section IV.

II. SYSTEM OVERVIEW

1) Gait Classification: The physiotherapists of Hirslan-
den Clinique La Colline, an orthopedic clinic in Geneva,
Switzerland, compiled a list of the gait patterns of interest
to our system. The patterns include walking with crutches
with various levels of weight-bearing, walking with different
frames, limping and walking normally. Table I includes the
list of all the 9 gait patterns that our system should detect.

2) Workflow: The developed system comprises three com-
ponents, the smartwatch, the smartphone and the web server.
Fig. 1 presents the flow of data in the proposed system. The
system is meant to be used during the rehabilitation phase, the
time that the patient is undergoing physiotherapy, of someone
that has had a lower body surgery. During physiotherapy
sessions in the clinic, any patient is walking while wearing a
smartwatch that tracks wrist movements. At the same time, the
physiotherapist is labeling on a smartphone any physiotherapy
session with the observed gait pattern of the patient. All these
data from multiple patients and physiotherapy sessions are
uploaded to the web server, where a user-independent machine
learning model is trained.

During everyday life, through the rehabilitation phase, the
patient is wearing a given smartwatch. Throughout the day, the
smartwatch is passively recording gait sessions of unknown
gait patterns when the patient is moving. These recordings
are uploaded from the smartwatch to the web server. Using
the trained machine learning model, those new recordings are
classified into the predefined gait patterns. Using the web
server, the physiotherapists can monitor how each patient’s
gait pattern is evolving, even between physiotherapy sessions.

3) System Implementation: Wrist movements of the pa-
tients are recorded using the three-axis accelerometer and the
three-axis gyroscope of an Android smartwatch running Wear
OS. The accelerometer sensor provides a three-dimensional
vector representing acceleration along each device axis, ex-
cluding gravity. The gyroscope sensor measures the angular
velocity of each axis of the device. Recordings can be made
either on-demand during a physiotherapy session when the
physiotherapist can provide the ground truth with the observed
gait pattern, or by transparently monitoring the movement of
the user throughout the day and saving only sessions where
prolonged movement or steps are identified.

At the end of every on-demand recording, sensor data
are sent from the smartwatch to the connected Android
smartphone. The smartphone is used by physiotherapists to
label each recording during a physiotherapy session with
the identified gait pattern. The recordings that are produced
during the monitoring phase of the system during the whole
rehabilitation program, naturally have no ground truth label
and are directly sent from the patient’s smartwatch to the web
server.

Every recording is saved to the web server. On every upload
of a new recording, the web server is extracting the features
that will be later used for machine learning. Training of the
selected user-independent machine learning classifier is run
periodically when enough new labeled recordings from mul-
tiple users have been obtained. On the other hand, the server
exposes an API with which the unknown gait patterns of the
non labeled recordings can be predicted. The physiotherapist
can query the server in order to monitor what is the dominant
detected gait pattern of a specific time and how it evolves
during the rehabilitation program.

4) Feature Engineering: The accelerometer and the gyro-
scope sensors of the smartwatch that we have used did not
provide a constant sampling rate throughout the recordings.
This is why the raw sensor data were resampled with a
constant sampling frequency of 60 Hz. This frequency was
selected for this study as it is higher than the 20 Hz commonly
required to assess daily living [16] and also lower than what
typical off-the-shelf inertial measurement unit components can
achieve. Features forming the feature vector used for machine
learning were derived from these time series data.

Both time and frequency domain features were computed
for both sensors over a selected time window. The time domain
features include the mean, the standard deviation, the median,
the skewness, the kurtosis, the 25th and the 75th percentile,
and the squared sum of the components under the 25th and the
75th percentile. Those were derived from the resultant vector
computed by the three, x, y and z, components that each sensor
provides.

For the frequency domain features, a Fast Fourier Transform
(FFT) was performed after normalization on the windows, and
the features were computed per axis. Those features include
the maximum frequency, the sum of heights of frequency
components below 5 Hz and the number of peaks in the
spectrum below 5 Hz, as it was noticed that most of the signal
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Fig. 1. Summary of the implementation of the gait recognition system.

TABLE II
EXTRACTED FEATURES PER SENSOR USED IN MACHINE LEARNING

Domain Features No of features

Time (resultant vector)

Mean

9

Standard deviation
Median

Skewness
Kurtosis

25th percentile
75th percentile

Sq. sum of < 25th perc.
Sq. sum of < 75th perc.

Frequency (per axis)
Maximum frequency

9Sum of 5 Hz
Number of peaks

strength lied between 0-5 Hz. The selection of the features was
based on a feature importance analysis presented in a previous
work of ours [8]. All the features extracted for this study are
summarized in Table II.

III. EXPERIMENT AND EVALUATION

Physiotherapists of the Hirslanden Clinique La Colline
recorded wrist movements of patients walking soon after they
have undergone a lower body orthopedic surgery. During all
recordings, the physiotherapist was in close proximity to the
patient, in order to guarantee the correct ground truth annota-
tion and the cleanliness of the data. In total, 48 recordings from
33 different patients were made over a period of 4 months. The
recordings amount to a total time of 155 minutes of labeled
gait patterns.

The classifiers that we have evaluated are Light Gradient
Boosting Machine (LGBM) [17], Logistic Regression (LR),
Support Vector Machines (SVM), Random Forest (RF), Deci-
sion Tree (DT), Extra Trees (ET) and k-Nearest Neighbours
(kNN). Each recording is segmented into multiple time win-
dows. The features were computed over a time window of
5s with a step size of 1s, so there was a 4s overlap between
consecutive windows. This value for the time window was
identified in a previous work of ours [8] as a good candidate
since it is large enough to contain useful information regarding
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Fig. 2. An example of the segmentation of a data recording.

the activity and small enough to increase the number of the
produced segments during segmentation. The segmentation of
any given recording is depicted in Fig. 2. The constructed
dataset contained in total 9089 observations.

Unfortunately, the acquired dataset was imbalanced. The
reasons were either lack of availability of patients with a
gait pattern belonging to one of the minority classes or no
consent from the patient. Fig. 3 presents the observation count
of the available dataset. To cope with the problem of the
imbalanced dataset and to optimize the performance of the
classification algorithms, the random minority over-sampling
with replacement method was used [18].

We have used Matlab for feature extraction and Python
and the Scikit-learn module [19] for machine learning. To
evaluate the performance of our system, we split the available
dataset into a training set (80%) and a test set (20%) in a
stratified fashion. The minority classes of the training set were
randomly over-sampled with replacement. The 10-fold cross-



TABLE III
CONFUSION MATRIX AND PERFORMANCE METRICS OF THE LGBM CLASSIFIER

Predicted class Precision Recall F1-scoreL W CU CRU CL10kg CL20kg CP FN FW

Tr
ue

cl
as

s

Limping (L) 155 0 0 0 0 0 5 0 0 0.981 0.969 0.975
Walking (W) 3 66 0 0 0 0 8 0 0 0.971 0.857 0.91

Crutches unladen (CU) 0 0 36 0 0 1 0 0 0 1 0.973 0.986
Crutches rolled out (CRU) 0 0 0 43 1 2 5 0 0 1 0.843 0.915

Crutches laden 10kg (CL10kg) 0 0 0 0 81 3 14 0 0 0.976 0.827 0.895
Crutches laden 20kg (CL20kg) 0 0 0 0 0 377 23 0 0 0.938 0.943 0.94

Crutches pain (CP) 0 2 0 0 1 19 899 0 0 0.937 0.976 0.956
Frame without wheels (FN) 0 0 0 0 0 0 6 44 0 1 0.88 0.936

Frame with wheels (FW) 0 0 0 0 0 0 0 0 24 1 1 1
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Fig. 3. Observation count of the available dataset of all gait pattern classes.
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Fig. 4. Box plot of multiple classifiers trained for gait recognition.

validation scheme was used on the training set to train the
model, the performance of which was evaluated on the test
set. Fig. 4 presents the box plot for all trained classifiers.
Different classifiers naturally perform differently. This is due
to the nature of the problem, the characteristics of the dataset
and the capacity of each classifier in terms of the variety of
functions it can fit. Table III presents the confusion matrix for
the LGBM classifier, the best performing classifier.

We have achieved an accuracy of 94.9% with the LGBM
classifier on the previously unseen test set. From the confusion
matrix, it is worth noting that the misclassified observations

belonging to one of the crutches classes were most of the
times predicted to belong to another crutches class. Although
misclassified per se, these kinds of observations may still
provide physiotherapists useful information regarding the gait
patterns of the patients.

IV. CONCLUSION

This paper presented a machine learning based, gait recogni-
tion system that assists physiotherapists with the postoperative
rehabilitation phase of patients who have undergone a lower
body operation. The architecture of the system comprising a
smartwatch, a smartphone, and a web server was presented.
The performance of the system was validated with labeled
data recorded by physiotherapists of the Hirslanden Clinique
La Colline, an orthopedic clinic in Geneva, Switzerland. Gait
patterns of patients were recorded soon after they have under-
gone various types of a lower body operation. The predicted
performance of the system reached an accuracy of 94.9% with
the best performing classifier among nine different gait classes.
The innovation of the proposed system lies in the fact that it
enables physiotherapists to monitor the evolution of the gait
pattern of a patient under rehabilitation, throughout the day
and not only during the defined and time-limited physiotherapy
sessions.
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