
The Uncertainty of the Truth

Michel Deriaz
University of Geneva, Switzerland
{firstname.lastname} [at] unige.ch

Abstract

How to trust without knowing the truth? This is probably
the key question that arises while designing applications
using virtual tags. A virtual tag is a geo-referenced note
that is visible for all the people that are in a specific
place. But what if you see a tag about an event or an
object that is not here? How to know if you are facing a
spam attack, or if the tag is simply outdated? And, how to
update the trust values of the author and the other people
that confirmed the tag, since you do not know if they are
honest? To answer these questions, we designed and
implemented FoxyTag, a free and collaborative system
which consist in posting virtual tags over speed cameras
in order to warn the other drivers. We used it to test our
new generic trust engine and got very promising results.

1. Introduction

Spatial messaging, also called digital graffiti, air
graffiti, or splash messaging, allows a user to publish a
geo-referenced note so that any other user reaching the
same place gets the message. For example, let us consider
the community of the Mt-Blanc mountain guides. The
members would like to inform their colleagues about
dangers in specific places. One guide publishes a geo-
referenced message that informs about a high risk of
avalanches, and any other guide that goes to the same
place will get the warning, and comment it if necessary.
Spatial messaging is a kind of blog in which editors and
readers share the same physical place.

There are many reasons to believe that spatial
messaging will become a widespread concept in a nearby
future. Today, people use the connection capabilities of
their mobile phone mostly in one way, to download
information. But in the same way that people passed from
television to Internet, the next generation of users will
probably become more "active" and create new content
with their mobile phones. We already observe this
tendency today for specific cases, like sharing pictures or
videos recorded by mobile phones and published on some
websites. If we remember how fast the computer power
and the communication capabilities of these little devices
increase, we can easily paint a glorious future for mobile
technology.

We will see in the related work section that lots of non
critical applications are already running on mobile
technology. We insist here on the "non critical" aspect; it
clearly implies that there is today no third party that
proposes any serious application using virtual tags.

To our view the reason is simple: We cannot trust their
tags. We do not talk about POI (Points Of Interest), data
that is usually provided by a unique source and copied in
the devices. We talk here about virtual tags, pieces of
information that can be posted by unknown users and
modified by other unknown users. These virtual tags are
posted in a collaborative way, like it is done in the Google
Earth Community [1] where every user can post any geo-
referenced information. But, we observe then that we
cannot trust this information. Security tools are not
sufficient; even if you can be sure about the identity of an
author, it is useless if you do not know him and therefore
cannot trust the content of his message.

And trusting virtual tags is not that easy. We will see
that applying "conventional" trust algorithms doesn't
work. One reason is because of what we call the
"Uncertainty of the Truth". For instance, a user that sees a
tag that warns about a danger of avalanche in mid-summer
doesn't know if it is spam (in which case he must decrease
the trust value of the tag's author) or if the tag is simply
outdated.

2. Related Work

At least to our knowledge, we are the first to study the
trust aspects in spatial messaging. Actually, even if we
type only "spatial messaging" in Google [2], the first
results point directly to our former papers. We find also
some people that use our definition to describe it, like for
instance in the alvafilm website [3]. So if we add the trust
component to spatial messaging, we reduce even more the
chances of finding some parallel work.

Since we couldn't find any similar work, we divided
this section in three parts. The first part describes other
work done for spatial messaging. The second part gives a
state of the art in the trust domain. And finally, since we
used a speed cameras warning system in order to test our
models, the third part gives a list of other warning
systems.

2.1. Spatial Messaging

Before starting this section, we would like to precise
the difference between spatial messaging and LBS
(Location Based Services). In short, LBS is a kind of
spatial messaging in which the user can only get data, and
not post it. Lots of LBS applications for augmented cities
(tourists get information, in their mother tongue, about
their current place) or augmented museums (visitors get
information about what they are looking at) have already
been implemented. We are clearly interested in spatial
messaging in general, where users also post information.

2.1.1. E-Graffiti. E-Graffiti [4] is a spatial messaging
application that allows a user to read and post geo-
localized notes. These notes can be either public or
private, meaning that only the set of people defined by the
author are able to read the note.

E-Graffiti has been designed to study the social
impacts on spatial messaging. 57 undergraduate students
were given a laptop with E-Graffiti for a semester. All
their activity has been logged and studied. And the results
are far from encouraging. At the end of the semester, it
came out that a user logged into the system only 7.6 times
in average (std dev: 12.6), and that actually most of the
users stuck to initial test messages. Another
disappointment was that most of the posted notes were not
related to their position. For example, a number of people
posted notes to advertise a website. The system was
designed so that the user could only get messages
available at his current position, but it was possible to post
a new message at any place from anywhere.

Technically, the position of the user is determined by
the wireless access point to which the device is connected.
The precision is therefore limited to the building in which
the user is.

2.1.2. GeoNotes. GeoNotes [5] has more
functionalities than E-Graffiti. While posting a note, the
user can choose how he is going to sign it (for privacy
reason the user can write any text he wants as a signature),
decide whether people are allowed to comment it, and
decide whether anyone can remove this message. For the
readers, the graphical interface of the application provides
some interesting functionalities like showing all the
neighboring messages or sort them according to different
criteria. Inspired by the E-Graffiti evaluation, GeoNotes
discarded the remote authoring of tags as well as the
possibility to "direct" notes to certain users.

The main interest of the GeoNotes authors seems to be
the navigation problems in the virtual messages space.
How to find a specific note? How to select only relevant
messages? One answer of these questions consists in
giving to the readers the possibility of ranking the notes.
Each user maintains also a friends list, which can be used
as a filter. But the trust and security aspects have not been
taken into account. It is easy to usurp someone's identity

and post false notes. An analysis of a GeoNotes log made
during a real-use study showed that 6% of the messages
have been signed using someone else's identity.

2.1.3. ActiveCampus Explorer. ActiveCampus
Explorer [6] goes a step further by displaying also where
other users are. Every user holds a PDA and its location is
determined by comparing the signal strength of different
wireless access points. Thus, the system knows the
position of all its users, and communicates this
information to the all of them that are close together. Like
E-Graffiti and GeoNotes, it is also possible to tag objects.

2.1.4. Socialight. Socialight [7] allows a user to post
some data to a specific place, intended for himself, for his
friends, or for everybody. Meta-data containing keywords
and geographical coordinates are attached to the posted
data, in order to facilitate searches. Tags are called
"Stickyshadows" and can be viewed with some specific
mobiles phones (and equipped with a positioning system)
via the Socialight Mobile application, or by browsing the
Socialight website. A nice feature they provide consists in
showing Stickyshadows on maps.

2.1.5. Context Watcher. Context Watcher [8] is a
mobile phone application written in Python for Nokia
Series 60 based on the MobiLife framework [9]. The first
version of this application already uses the notion of
confirmed buddy for security and trust purposes. They
have a part that they called trust engine in their
architecture but a closer look at it shows that it is actually
only an access control system. Policies and profiles are
used to decide who can access what data and under what
condition, but there is no trust mechanism that informs
how reliable a requested information is.

2.1.6. Summary. These projects don’t seem to be
successful. E-Graffiti and GeoNotes have been abandoned
shortly after their launch. Socialight is still active, but
there are seldom new posts. We believe that the lack of
success is related to the lack of interest... in publishing
notes just for publishing notes! Spatial messaging would
probably have more chance to emerge if we focus on
specific communities, with real problems that could be
solved by this concept, rather than imposing the system to
students without giving them any good reason to use it.
But then we need a trust mechanism to exclude
malevolent users. In GeoNotes people may stay
anonymous, but we saw that users then usurped others’
identities; it is therefore not possible to trust a message. In
E-Graffiti users reveal their real identity, but it useless to
know that a message has been posted by a certain "John"
if you do not know John.

Commercial systems usually implement all the
conventional security tools (username, password), but
there is no trust engine that informs about the reliability of
a given message. It means that it is always a human that
plays the role of the trust engine and that excludes what he
thinks are malevolent users.

However, in widely deployed systems (like for instance
our FoxyTag [10] application that informs about speed
cameras in all Europe) where there is only very little
human interaction, only a trust engine can ensure a high
quality of the data.

2.2. Trust

Trust is a very active research domain. It started by
providing solutions for centralized systems (for instance
the reputation system in eBay where seller and buyer can
rate one another after a transaction), and then quickly
switched to peer-to-peer systems. Peers rate each other
and the combination of all the values informs about the
reputation of the peer. The challenge here is where to
store trust values, as there is no central server. Among the
proposed solutions, we mention here a few of them:

In EigenTrust [11] each peer has a set of mother peers
responsible for storing its trust value, and therefore each
peer acts also as a mother peer for others. It resists to an
attack even when up to 70% of the peers are colluding in
order to subvert the system. Peers are anonymous.

An interesting system that is similar to EigenTrust, but
in which peers store their own trust value locally, is called
Elicitation-Storage [12]. The Elicitation-Storage protocol
is used to protect cryptographically the trust value. The
requester gets the IP address of the former requesters and
checks with them the authenticity of their vote.

The Secure project [13] aimed to describe in a formal
way what trust is, staying as close as possible to the
human notion of trust. The motivation for the project was
that the number of entities in Internet systems is becoming
very large. Consequently, it was important to develop
security models that allow nodes to measure the risk
involved in interacting with other nodes that they have not
met before. The secure project implementation has been
tested with a mail application: A proxy between the peer
and his mailbox was analyzing the behavior of the user
(for instance if he moved a message in his spam folder)
and updated the trust values according to it. The
reputation system allowed the different peers to share their
information in order to exclude faster the spammers.

Kinateder and Rothermel [14] present a peer-to-peer
system that provides trust and recommendations about
different categories of topics. Similar to sites like
Epinion.com or the rating system that we find in eBay, but
peer-to-peer.

The TrustMe protocol [15] builds trust in peer-to-peer
networks. The trust value of a specific peer is
anonymously stored on another peer. Communications are
encrypted using sets of private/public keys. The drawback
is that all peers have to connect to a bootstrap server when
they join and when they leave the network (in order to
transmit the hosted trusted values to another peer).

Anwitaman Datta, Manfred Hauswirth and Karl Aberer
present in [16] how P-Grid can be used to implement a
distributed PKI (Public Key Infrastructure), enabling c2c
(customer to customer) services like eBay but without any
centralized system. Unlike PGP that uses the web of trust
approach to access a particular public key, this system
uses a statistical method; many peers are queried, and the
information is rejected if a quorum a peers cannot be
obtained.

Very interesting and promising decentralized solutions
like the EigenTrust algorithm made the community to
forget one aspect that is only seldom taken into account:
time. In practice time is important. Someone you trusted a
long time ago is perhaps not trusty anymore. Even people
with a very high reputation can become malevolent
afterwards. Since in human communities the trust is very
time dependent, we believe that this component should
also be included in trust engines and particularly in the
spatial messaging context where posted information can
simply become obsolete after a while.

Guha [17] built a generic trust engine allowing people
to rate the content and the former ratings. He recognized
however that in case of highly dynamic systems (like in
spatial messaging where tags can appear and disappear
very quickly), "Understanding the time-dependent
properties of such systems and exploiting these properties
is another potentially useful line of inquiry." Most existing
trust metrics update their trust values only after a specific
action, like a direct interaction or the reception of a
recommendation. The few trust engines that take the time
component into consideration simply suggest that the trust
value decreases with the time. Mezzetti's trust metric [18]
consists in multiplying the trust value at time t by a
constant between 0 and 1. In Bayesian-based trust metrics
[19, 20], the trust value converges to its initial value over
time. All these models work in situations where the
changes occur slowly, but are challenged in short-lived
cases. Unlike the spatial messaging community that seems
to be less and less active, the trust community seems to
grow and commercial applications are more and more
interested in their work. We find for instance some
attempts to add trust in Wikipedia articles, like it is
presented in a paper from Pierpaolo Dondio, Stephen
Barrett, Stefan Weber and Jean-Marc Seigneur [21].
However, we haven't found yet any work on trust in the
spatial messaging domain.

2.3. Speed Cameras Warning Systems

As the number of speed cameras increases on European
roads, we find more and more services that help the
drivers avoiding expensive pictures. We will talk neither
about illegal means (for the majority of European
countries), like the radar detectors provided by
RadarBusters [22], nor about non-technical means like

phone centrals providing vocal information. We will
concentrate here only on information systems that inform
drivers about speed camera positions, which is completely
legal according to the law of most European countries.

2.3.1. Mogoroad. Mogoroad [23] is a well-known
system in Switzerland to announce traffic perturbations,
police controls, and of course fixed and mobile speed
cameras. It works on most mobile phones. They collect
their information from different partners, like radio
stations and newspapers, as well as from their own users
that can either signal an event by phone or through an
application running on mobile phones. There is no trust
engine to validate the quality of the data. According to
their CEO, Roberto Marra, it is the experience of the
employees that collect the data that is used to differentiate
useful and correct information from spam. In practice this
works quite well since the covered area is small. However,
such a system could not easily be extended to work
worldwide while providing the same quality of
information. The cost of this service is (in 2008) about
110 € per year.

2.3.2. SmartSpeed. SmartSpeed [24] is an application
running on Windows Mobile that informs the driver about
dangerous zones, traffic jams, and speed cameras.
Working with all NMEA compatible Bluetooth GPS, the
program compares the current position with the "events"
to come and informs the user through a voice synthesizer.
Maps and "events" files can be downloaded in advance,
and a GPRS connection allows the user to get recent
information. An interesting functionality allows any user
to send a new event to the server, which will in turn
inform all the users. A typical use consists in signaling
mobile speed cameras to other drivers. Even if presented
differently, it is clearly a way of doing spatial messaging.

The light version a SmartSpeed is relatively cheap (30
€ including free updates for one year) if you possess
already a smartphone and a Bluetooth GPS. However,
messages sent by other users to signal mobile speed
cameras are not verified and are available only for one
hour. And users are not really motivated to post such
messages since they have nothing to gain in signaling a
new "event". SmartSpeed seems more adapted to signal
fixed speed cameras than mobile ones.

2.3.3. Coyote. Coyote [25] is an independent system
sold as a little box containing a GPS. When the driver
approaches a speed camera, Coyote informs him orally
about the remaining distance to this camera. To signal a
new speed camera (or a new position for a mobile one),
the user can simply press once the button on the top of the
box. To signal a speed camera on the opposite direction,
the user presses twice the button. This information is then
sent to the server thanks to an included GPRS card, where
a human operator verifies (previous messages of that user,
comparison with other users, using another speed camera

information service...) the plausibility of the information
before broadcasting it to all users.

Despite it is very simple to use, Coyote remains an
expensive system (699 € for 2 years with unlimited use
and including communication fees) that not everybody can
afford. And if there are too few users, then the chance that
you are the first that discover a speed camera (by being
flashed!) is high...

2.3.4. InfoRad. Autonomous and easy to use, InfoRad
[26] beeps when the driver enters a "risky area". All the
risky areas, materialized with a speed camera, are stored
in the on-board database. It works thus only with fixed
speed cameras and it is not possible to signal a new one to
other drivers. It allows however a user to add its own risky
areas for personal use. Their website provides time to time
updates of risky areas. The device with an unlimited
access to their database costs about 200 €.

3. Trusting Virtual Tags

Lots of work has already been done in the trust context
(see 2 - "Related Work"), and the question that arises is
why not just using well-known trust models and apply
them to virtual tags? The answer is simply that it will not
work. Indeed, traditional trust models are mainly designed
with file sharing or auction applications in mind. In this
case, people are rating each other and when user A wants
to download a file (or buy an item) from user B, he
questions the system in order to determine how
trustworthy user B is. Currently, commercial systems (like
eBay) are using very basic centralized systems, and the
academics are suggesting solutions to transform such
systems into peer-to-peer architectures.

But spatial messaging is noticeably different from file
sharing or auctioning and needs therefore a new trust
model. The key difference is that in spatial messaging it is
difficult to increase its own trust without making a
significant contribution. For instance, to post a new tag
that will be confirmed by others (in order to create a trust
link), a user will have to be physically there (to make the
observation that deserves a tag). In a similar way, the user
that deletes an outdated tag makes also a significant
contribution. So, even if a user wants to increase his trust
value in order to harm the system later, his former
contribution will compensate his future bad behavior. And
this is an interesting difference that will be used in this
work in order to construct our trust engine. It is, at least to
our knowledge, a novelty in the trust domain and can be
considered as the key point of this work. In "traditional"
trust systems, it is always possible to easily increase one's
own trust value in order to subvert the system later. For
instance, it is easy to sell honestly a few goods in eBay in
order to increase one's trust value. It is also easy to
provide a few good files in a file-sharing system and then
use the resulting good reputation to send Trojan horses.

But in spatial messaging, a user can increase his trust
value only in return of a significant contribution. We will
also see in 3.2 - "Updating trust values" how we can make
it impossible for a user to switch regularly between good
and bad behavior in order to keep a minimum trust value,
and how to avoid that a user that behaved correctly for a
long time and became malevolent afterwards uses its long-
term good reputation to harm the system.

3.1. The Uncertainty of the Truth

In traditional computational trust, we usually agree
over a set of axioms and hypothesis. For instance, the
"truth" is a notion that is common to all. A corrupted file
is seen as corrupted by everybody. In spatial messaging
however, the truth is context dependent. The truth
becomes a subjective and temporal notion. Something that
is true for one user is not necessarily true for the others.
Something that is true at a certain time is not necessarily
true later. We call this new notion the "uncertainty of the
truth". If user A posts a tag saying "Dangerous path", user
B only knows that user A finds this path dangerous. But A
is perhaps just a tourist and the path is in no way
dangerous for user B, which can be a confirmed mountain
guide. Or this path was maybe dangerous because of the
snow, which melt away by the time.

To our view, trust is not only a tool that can be used to
exclude malevolent users from a given system. Trust is
also a way of creating relationships between users that
behave in a similar way. Like in real life, each user has its
own definition of what the truth is. The aim is therefore to
create trust relationships between people that share the
same definition.

3.2. Updating Trust Values

A traditional way to store and update a trust value
consists in counting the number of positive outcomes P,
the number of negative outcomes N, and to define the
current trust value as T = P / (P + N). It is a simple model
that fits very well to file sharing applications where a
good file is simply considered as a positive outcome and a
corrupted file as a negative one. In spatial messaging
however, defining a positive and a negative outcome is
more complicated. And since we have to deal with what
we called previously the "uncertainty of the truth", we
need to define a model that is specific for spatial
messaging.

A model that can be used in case people are honest is
one that uses data mining techniques in order to determine
how reliable a given tag is, in a given situation for a given
person. Data mining consists in picking up relevant
information in large data sets. A good definition can be
found at [27]. Basically, when you rate a tag, you increase
the trust links with all the people that reviewed it in the
same way, and decrease the trust links with all the people

that rated it differently. While requesting tags, data mining
algorithms are then able to determine how "close" you are
with each reviewer according to the situations where you
previously interacted with these people, and take this into
account to determine how pertinent this tag is to you.

This model is however challenged when malevolent
users take part in the system. For instance, an attack
would consist in rating automatically and positively all
new tags so that the next reviewers increase the
malevolent user's trust value. And then this user will use
his high value to post "reliable" false tags. A solution to
this consists in increasing only the trust value of the author
of a tag, since posting randomly interesting tags (if they
are not "interesting", nobody will rate them positively) is
almost impossible.

In applications where it is possible to scan all the tags,
and rate them automatically, it seems easy to cheat the
system. It is difficult in some cases to differentiate a
normal behavior from a malevolent one. For instance, if
you see a tag warning about a specific danger and you do
not see this danger, you do not know if the author is a
spammer (and you need to decrease his trust value) or if
the danger simply disappeared (and then you should not
decrease his trust value). We need to determine how much
a trust value must be decreased when we rate negatively a
tag, so that an honest user is not too much penalized, but
so that a spammer can be excluded from the system in a
reasonable delay. It means that even if the system is
generic, it needs a high comprehension of the application
domain in order to determine what are the right rules and
parameters. For instance a rule will define how much we
must decrease the trust value of someone that doesn't vote
like us and a parameter will define what the minimum
trust value is.

Like in the human world, trust varies not in the same
way when it increases than when it decreases. Trust takes
time be built, but can be destroyed very fast. And this non-
linear way of handling trust is certainly necessary to
protect ourselves. If you lent 10 times 2 € to someone that
always paid you back, you will probably stop to trust him
before 10 times when he stops refunding you. The reason
is even more accentuated in a digital world where people
can act in an automatic way, thus very fast. If we use our
former P / (P + N) example, it is easy for a user to behave
correctly (most probably in an automatic way) for a
certain time, and then use its high trust value to subvert
the system. A first idea consists in representing a trust
value as a single value. A good behavior increases it, a
bad behavior decreases it. But the maximal value is
limited. It means that even if someone behaves very well
for years, his trust value is not that high, and can quickly
become negative in case of a big bad behavior, or a
succession of a few bad behaviors. Another important
point is that trust increases in a linear way but decreases
exponentially. An exponential function varies very slowly

at the beginning and then increases endlessly. Like in the
human model, we accept to forgive seldom and small
misbehaviors, but we break our trust relationships if you
we face a big misbehavior or a succession a small
misbehaviors.

4. A Generic Trust Engine for Virtual Tags

4.1. Overview

The main idea of our generic trust engine, called
GenTE, is to remember only important or recent
information, like it is done in human communities. The
virtual tags (called vTags or simply tag) and the users
keep a history of their last or important transactions.

To know whether a tag must be shown to the user, the
trust engine checks the n last reviews done by trustworthy
users. A user is trustworthy if his combined trust value,
computed as a mix of the trustor's opinion (based on
former direct interactions) and the opinions of the trustor's
friends (who ask their own friends, and so on until a
certain level), is above a certain threshold. A trustor calls
"friend" every user with who he has a good trust
relationship, or better said, each user with a local trust
value higher than 0.

When a user rates a tag, he updates the trust values of
the author and the former reviewers according to rules and
parameters that depend on the application. In certain
cases, a review can be done on both directions. For
instance an author can update the trust value of every
reviewer that gives a positive rating, since they seem to
share the same opinion about the tag.

4.2. A vTag in GenTE

A vTag contains different information, like its position
and its content, as well as a history. The history is a two-
column table containing pairs of user ID and
corresponding vote. An example is given in figure 1.

ID Vote
8 0
3 1
4 1
2 1

Figure 1. The history of a vTag

The lines are ordered in an inverse chronological order,

meaning that the last user that voted for this tag is user 8.
The vote can be either a "1", if the user confirms the tag,
or a "0" if the user denies it. So we see that users 2, 4 and
3 agreed with the content of the tag, but later user 8
disagreed with it. The reasons can be either because user 8
is a malevolent user that wants to delete the tag, or, more

probably, that the tag is outdated and needs therefore to be
removed. If a user that is already in the history votes again
for this tag, then his line is moved at the top of the table
and the corresponding vote is updated.

When a user requests tags in a given area, the trust
engine checks the vote of the two last friends (remember
that a friend is someone in which we have a local trust
value higher than 0) and if at least one of them voted "1",
the tag is sent to the user. It means that even if someone
denied the tag by mistake, the tag is still returned to
people that are asking for it. This choice implies that we
suppose that the price of a false positive (a tag that should
not be sent is sent) if lower than the price of a false
negative (a tag that should be sent is not sent), which
seems to be the case in all the practical applications we
thought about.

When the two last users denied the tag (they voted
"0"), the tag gets a request-to-delete order. It means that
the tag remains for the same amount of time than elapsed
since its creation before being deleted by the trust engine.
A tag that has been created a long time ago needs
therefore more time to be deleted than a recent one.
However, to avoid that an "old" tag needs too much time
to be deleted we have a maximum delay. And, to avoid
that malevolent users scan the network and deny the tags
as soon as they appear, we added also a minimum delay.
Since then, each new tag is at least present for a certain
amount of time (the minimum delay), so even if
malevolent users deny these tags, honest users will have
time to confirm them (which will cancel the request-to-
delete order) and by the same time decrease the trust value
of the malevolent deniers.

4.3. A user in GenTE

A user is represented by an ID and a trust table. The
trust table is a three-column table containing pairs of user
ID and corresponding trust values. We differentiate the
AT trust (author trust) which indicates how reliable a
given user is to post or to confirm an existing tag and the
DT trust (denier trust) which indicates how reliable a
given user is to deny tags that are outdated or false. An
example is given in figure 2. We see that this user has in
his trust table two friends (users 3 and 7), one user he
doesn't trust (user 8), and one user in who he has the same
trust as for an unknown one (user 13).

ID AT Trust DT

Trust
3 5 4
7 2 3
8 -3 -4
13 0 0

Figure 2. The trust table of a user

After modifying the trust value of a user, the

corresponding line is placed on top of the list, so that there
are sorted in an inverse chronological order. Each trust
value is simply an integer in the range [tmin, tmax] so that
tmin < 0 < tmax. GenTE allows specifying rules to describe
how a trust value must be changed according to a given
situation. A typical case is to have a linear way to increase
a value (for instance adding n when you agree with a tag)
and an exponential way to decrease a value (for instance
multiplying by m a negative trust value). And if -tmin is
much bigger than tmax (for instance tmin =-50 and tmax =5),
then we imitate the human way of handling trust [28]:
Trust takes time to be built, we forgive some small
misbehaviors (exponential functions moves slowly at the
beginning), but when we loose trust in someone (one big
disappointment or lots of small disappointments) then it
becomes very difficult to rebuild a good trust relationship.
We avoid that malevolent users switch between good
behaviors (in order to increase their trust value) and bad
behaviors (in order to subvert the system).

It is important that our system forgives small mistakes
in cases where the truth is unknown. Imagine that a user
sees a tag, but the tagged object does not exist anymore.
He will disagree with the author of the tag as well as with
all the people that agreed. He will therefore decrease their
trust values since they are perhaps spammers. But, most
likely, the object simply disappeared in the meantime and
they are not spammers. Our model is built to forget easily
such mistakes, as long as they do not happen too often,
but to decrease quickly the trust values of malevolent
users. The combined trust value of a user is relative and is
computed by the following function:

combined_trust = q * myOpinion + (1-q) *

friendsOpinions , q=[0..1]

It is a recursive function where myOpinion is the local

trust value and friendsOpinions is the average opinion of
the n first friends (where local trust > 0). These friends
apply the same function, so they return a mix between
their own opinion and the average opinion of their own
friends. And so on until we reached the specified depth.
This way of processing is fast (all the values are
centralized) and gives a good idea of the global reputation
of a user. Typically, if we choose n=10 (number of
friends) and a depth level of 3, then we have already the
opinion of 100 + 101 + 102 + 103 = 1111 reliable people
including ourselves, with more importance given to close
friends. The higher is q, the more the user gives
importance to his own value. In situations where people
are susceptible of making mistakes, this value is usually
quite small.

4.4. Trust updates

When a user votes for a tag, he puts his ID and his vote
at the first line of the tag's history. This newly updated
history is then analyzed by the trust engine, and the trust
values of the users (that are in the history) are update
according to their votes. For instance, if a user votes "1"
and the two previous voters voted "0", the confirmer will
decrease the trust value of the deniers. And perhaps
increase the trust value of the author. The trust engine
proposes a default behavior for each situation that can be
adapted by the application developer in order to better
meet the requirements of his application.

4.5. Rules

The rules that define the trustworthiness of a tag for a
given user, as well as the rules that define how the trust
values must be updated, are written by the application
developer. To test our trust engine, we chose a speed
camera warning system and wrote the following rules for a
tag request:

History Rules

Ø (empty) if I trust the author, return true;
return false;

1 if I trust the author, return true;
if I trust the confirmer, return true;
return false;

1-1 return true;
0 if I trust the author, return true;

return false;
0-0 if I trust booth deniers, return false;

if I trust the author, return true;
return false;

1-0 if I trust the author, return true;
if I trust the confirmer, return true;
if I trust the denier, return false;
return true;

0-1 if I trust the author, return true;
if I trust the confirmer, return true;
if I trust the denier, return false;
return true;

We chose for this case that the size of the history is 2.

We therefore keep, for each tag, the author ID as well as
the two last votes. For instance, the notation 0-1 means
that the last user denied the tag (he voted "0") and the last
but one user confirmed it (he voted "1"). If we need to be
more precise, we use also the notation 0(U2)-1(U1)
meaning that user U1 confirmed the tag, followed by user
U2 who denied it.

These rules decide whether a given tag must be
returned to the requester. We execute the rules one by one
until a condition make us to execute a "return true", in

which case we return the tag, or a "return false", in which
case we do not return the tag.

We then defined also how the trust values must be
updated. The next two ables show the current history and
shows how the trust tables of the author, the current user
and the people in the history are updated according to the
current vote ("1" or "0").

To show how we modify the trust values in each case,
we define two functions. The first updates the AT trust
value and is written like: UAT(U1, U2, a, b, c, d). It means
that U1 updates the local trust he has in U2 as following: If
the current trust of the trustee is equal or greater than 0, it
multiplies the current trust by a and adds b, and if the trust
of the trustee is negative, then it multiplies the current
value by c and adds d. In a similar way, we define
UDT(U1, U2, a, b, c, d) to update the DT trust. Finally we
add also two functions, UAT(U1, U2, a, b, c, d, C) and
UDT(U1, U2, a, b, c, d, C), where C is a specific condition
that must be true in order to update the trust.

For instance, if the current user Uc votes 1 and the
history is empty, then this user will increase the author's
trust value if the condition C is met. In our case, C returns
true only if there are at maximum N voters that already
voted for this tag.

History Rules if vote = 1(Uc)

Ø (empty) UAT(Uc, Ua, 1, 5, 1, 5, C)
1(U1) UAT(Uc, Ua, 1, 5, 1, 5, C)
1(U2)-1(U1) UAT(Uc, Ua, 1, 5, 1, 5, C)
0(U1) UAT(Uc, Ua, 1, 5, 1, 5, C)

UDT(Uc, U1, 1, -1, 1.3, -1)
0(U2)-0(U1) UAT(Uc, Ua, 1, 5, 1, 5, C)

UDT(Uc, U1, 1, -3, 2, -3)
UDT(Uc, U2, 1, -3, 2, -3)

1(U2)-0(U1) UAT(Uc, Ua, 1, 5, 1, 5, C)
UDT(Uc, U1, 1, -1, 1.3, -1)

0(U2)-1(U1) UAT(Uc, Ua, 1, 5, 1, 5, C)
UDT(Uc, U2, 1, -1, 1.3, -1)

History Rules if vote = 0(Uc)

Ø (empty) UAT(Uc, Ua, 1, -1, 1.3, -1)
1(U1) UAT(Uc, Ua, 1, -1, 1.3, -1)

UAT(Uc, U1, 1, -1, 1.3, -1)
1(U2)-1(U1) UAT(Uc, Ua, 1, -1, 1.3, -1)

UAT(Uc, U1, 1, -1, 1.3, -1)
UAT(Uc, U2, 1, -1, 1.3, -1)

0(U1) UAT(Uc, Ua, 1, -1, 1.3, -1)
UDT(Uc, U1, 1, 5, 1, 5)
UDT(U1, Uc, 1, 5, 1, 5)

0(U2)-0(U1) UAT(Uc, Ua, 1, -1, 1.3, -1)
1(U2)-0(U1) UAT(Uc, Ua, 1, -1, 1.3, -1)

UAT(Uc, U2, 1, -1, 1.3, -1)

0(U2)-1(U1) UAT(Uc, Ua, 1, -1, 1.3, -1)
UAT(Uc, U1, 1, -1, 1.3, -1)
UDT(Uc, U2, 1, 5, 1, 5)
UDT(U2, Uc, 1, 5, 1, 5)

4.6. Additional rules

Rule 1: If you are in the first place of the history and you
vote the same as previously, do nothing (no trust update
and no modification of the history).

Without this rule a single user could delete a tag (by

voting twice "0"). However, it is important to note here
that this rule mentions explicitly that the two votes are the
same. If you vote differently, the trust tables and the
history are updated normally. We could thing that if
someone votes differently, it was a mistake the first time
and we can simply remove the former vote in the history
and replace it by the new one. However, this behavior
opens the door to a structured attack: The hacker finds a
tag whose history is 0(U2)-1(U1), and then simply votes
alternatively "0" and "1". He first votes "0", so he
increases his DT trust with U2. Then he votes 1, which
would erase his last vote, and then he votes again 0, which
will again increase his DT trust with U2. And so on. In
short, this would allow anyone to get the maximum DT
trust value.

Rule 2: If you are in the first place in the history and
voted "0", then the tag is not returned.

This rule avoids that users are disturbed by an object
that disappeared. For instance, if a user tagged an object,
then you need two different users to give a request-to-
delete order to this tag. But if you are the only one that
votes for this tag, you will never be able to delete it, and
the tag will always be returned to you.

Rule 3: If an author denies his tag, and if the history is
either empty or contains a single "0", then the tag is
removed immediately.

If you post a tag and nobody sees it, or if you post a tag
by mistake and want to remove it, this rule avoids keeping
a wrong useless tag. We see also that if the only person
that voted for this tag denied it ("0"), then it is a good idea
to remove the tag immediately. However we do not
remove the tag if the history equals 0-0. The reason is
because a malevolent user can set up a structured attack in
order to increase his AT trust: He authors a new tag, wait
for a while so that people confirming the tag increase his
trust value, and then with the help of a friend denies the
tag (0-0) and then revokes it. Since the tag disappears, he
can post a new one at the same place and again benefit

from the trust increases given by the N first users that will
confirm the new tag.

4.7. Validation process

We chose a speed camera tagging application to
validate our trust engine. The first reason is because the
topic is quite complex and interesting. Speed cameras can
appear and disappear at any time, and it is not always
possible to know if a false alarm is due to spammers or if
it is actually the speed camera that just disappeared. The
second reason is that it was very easy to find volunteers to
test our system. We set up a simulator that allowed us to
test different scenarios (spammers, users that try to delete
all the tags...) as well as a widely deployed application
used to confirm the results of the simulator. This
application is FoxyTag [10], a worldwide free and
collaborative system to signal speed cameras. The idea of
FoxyTag consists in posting tags over speed cameras in
order to warn the other drivers. Users are also motivated
to confirm existing speed cameras; by doing so, they
create trust links with the author and the other users that
confirmed the camera, allowing them to get more reliable
information in the future. More information about
FoxyTag can be found on the website of the project [10].

5. Simulator

Our simulator randomly positions speed cameras on a
road and simulates user’s cars navigating according to
given scenario parameters. An additional user, whose
behavior can also be completely specified, logs its
observations and returns the number of true positives
(alarm: yes, camera: yes), false positives (alarm: yes,
camera: no), true negatives (alarm: no, camera: no) and
false negatives (alarm: no, camera: yes).

We model our road as a single way on a highway. Exits
are numbered between 1 and n. Between two exits there is
only one speed camera, numbered between 1 and n-1. So
the camera c1 is between exits e1 and e2, the camera c2 is
between exits e2 and e3, and so on. Figure 3 shows a road
model.

e1 e3 e4e2 c2 c3c1

Figure 3. The road model

This model seems to be very simplistic. It is however
sufficient to validate our trust metrics. Of course, we do
not take into account some contextual information, like
shadow areas (tunnels, urban canyons...) or what happens
when the user posts a tag for the user driving in the
opposite direction. These are more technical issues that
need to be validated in the field and it is what we actually

did with a real device in a real car. Since we can define
the behavior of every user (where they enter and exit, how
reliable they are by signaling speed cameras...) as well as
the behavior of each speed camera (frequency of turning
on, for how long...), we can precisely define which user
drives in which area and how many speed cameras he is
meant to cross on average. Our simulator accepts an input
file that looks like this:

cam;1-4;8;15,10
cam;5-5;24;2,0
cam;5-5;240;3,30
usr;1-10;1-5;24;95;90
usr;1-1;3-5;240;80;75
usr;11-15;1-10;1;10;10
usr;11-11;1-10;0;20;25
col;5-7;1-11;6;10;100
spm;20-23;1-10;1
scn;100;2;run(24);pas(1,10);act(1,10,50,60)

• In the first line, "cam;1-4;8;15,10" means that

cameras 1 to 4 have one chance out of 8 to become
active within an hour, and when one becomes active
then it stays active for 15 minutes. After it stays
inactive (paused) for at least 10 minutes. Note that
these cameras will on average become active less
than 3 times a day, since they cannot switch to active
while there are already active or paused. Precisely,
these cameras will become active every
8+(15+10)/60 = 8.42 hours on average.

• The next two lines define two different behaviors for
camera 5.

• In the fourth line, "usr;1-10;1-5;24;95;90" means
that users 1 to 10 entry the highway at 1 and exits it
at 5, that they run once a day and that they vote 95%
of the time correctly when they signal the presence of
a speed camera, and 90% of the time correctly when
they cancel a camera.

• In the collusion line, "col;5-7;1-11;6;10;100", we
deduce that users 5 to 7 are colluding by entering all
at the same time on entry 1, exiting on exit 11, and
voting (all similarly) about all 6 hours with 10% of
true positives and 100% of true negatives.

• In the spam line, "spm;20-23;1-10;1", we deduce that
users 20 to 23 spam by entering all at the same time
on entry 1, exiting on exit 10, and voting 1 about
every hour at every speed camera place.

• The scenario, "scn;100;2;..." contains 100 big loops
and 2 small loops. The scenario itself will be
executed twice, then the trust engine is initialized,
and then we re-execute the scenario twice. And so on
(100 times).

• run(t) means that the system will run for t hours
(simulation time). Each minute, the go method of
each camera and each user is called, allowing them
to act according to their specified behaviors.

• pas(e1, e2) means that our test user will passively
drive once from exit e1 to exit e2. Passively means
that he does not vote. His observations are logged
and printed.

• act(e1, e2, tp, tn) means that our test user will
actively drive once from exit e1 to exit e2 and has tp
(True Positive) chances (in %) to vote correctly if he
sees a speed camera, and tn (True Negative) chances
(in %) to vote correctly when he tries to cancel a
speed camera that does not exist (anymore). His
observations are logged and printed.

• Everything after a // is a comment and is ignored by
the parser.

6. Results

We compare here our GenTE trust engine with one
called BasicTE, which simply adds a tag when a user
posts such a request and remove it when a user denies it
(there is in fact no trust engine). This permits to the reader
to appreciate the efficiency of the GenTE trust engine. We
tested it once with fixed speed cameras (Gen_F), and once
with mobile speed cameras (Gen_M). The only difference
is that in Gen_M the tags are automatically removed after
6 hours.

Scenario 1
cam;1-10;0;9999999;0
usr;1-100;1-11;24;100;100
usr;101-105;1-11;1;0;100
scn;100;100;run(24);act(1,11,100,100)

Scn 1 tp fp tn fn

Basic 43030 0 0 56970
Gen_F 99948 0 0 52
Gen_M 92022 0 0 7978

Scenario 1 tests our trust engine when malevolent users

try to remove all the tags. We have 10 speed cameras that
are always turned on (they are fixed speed cameras), a
hundred users that behave always correctly and five users
that systematically try to cancel all speed cameras they
cross. Each hacker runs on average 24 times more often
than an honest user. In the results table we compare the
Basic and the GenTE trust engines. We used also the
following abbreviations: "tp" means true positives (alarm:
yes, camera: yes), "fp" means false positives (alarm: yes,
camera: no), "tn" means true negatives (alarm: no,
camera: no) and "fn" means false negatives (alarm: no,
camera: yes).

With the BasicTE trust engine, we see that there are
more false negatives (alarm: no, camera: yes) than true
positives (alarm: yes, camera: yes). This is normal since
the malevolent users are driving more than the honest
ones. But our GenTE trust engine eliminates quite well

these malevolent users, since less than 0.06% (52 / 99948)
of the speed cameras where not tagged when we
mentioned them as fixed ones (Gen_F).

Scenario 2
cam;1-10;9999999;0;0
usr;1-100;1-11;24;100;100
spm;101-105;1-11;1
scn;100;100;run(24);act(1,11,100,100)

Scn 2 tp fp tn fn

Basic 0 20820 79180 0
Gen_F 0 925 99075 0
Gen_M 0 840 99160 0

Scenario 2 tests how the trust engine reacts against a

spam attack. This time the cameras are always turned off
and the malevolent users vote "1" for each speed camera
position. Again, we observe a significant improvement
with our new trust engine.

Scenario 3
cam;1-10;48;360;720
usr;1-100;1-11;24;100;100
scn;100;100;run(24);act(1,11,100,100
)

Scn 3 tp fp tn fn

Basic 8705 143 90767 385
Gen_F 8759 748 90146 347
Gen_M 8787 245 90619 349

In scenario 3 we have 10 speed cameras that are turned

on every 66 hours (48 + (360 + 720) / 60) for 6 hours, and
100 users that vote always correctly. We have of course
more false positives since we need two users to remove a
tag (against only one in BasicTE). But if we tag the
cameras as mobile ones (Gen_M), we observe an
interesting improvement for the number of false positives.

Scenario 4
cam;1-10;48;360;720
usr;1-100;1-11;24;95;95
scn;100;100;run(24);act(1,11,95,95)

Scn 4 tp fp tn fn

Basic 8423 294 90472 811
Gen_F 8806 802 89990 402
Gen_M 8488 277 90856 379

In scenario 4 the users are voting incorrectly 5% of the

time. This figure is clearly overrated (according to the
tests realized with FoxyTag where this number is less than
1% in practice), but it let us to prove that our trust engine

is tolerant with unintentional incorrect votes made by
honest users.

Scenario 5
cam;1-10;48;360;720
usr;1-100;1-11;24;100;100
usr;101-105;1-11;1;0;100
scn;100;100;run(24);act(1,11,100,100)

Scn 5 tp fp tn fn

Basic 3845 76 90801 5278
Gen_F 8765 719 90102 414
Gen_M 8761 262 90591 386

In scenario 5 we added 5 deniers that try to remove all

the tags they cross. The honest users are behaving
correctly 100% of the time. We have clearly more false
positives than for the BasicTE trust engine. This is normal
since the deniers removed all the tags, whether there is a
camera or not. If we compare the results with the ones
from scenario 4 (for Gen_M), we see that our trust engine
eliminates efficiently deniers.

Scenario 6
cam;1-10;48;360;720
usr;1-100;1-11;24;95;95
usr;101-105;1-11;1;0;100
scn;100;100;run(24);act(1,11,95,95)

Scn 6 tp fp tn fn

Basic 3612 60 91000 5328
Gen_F 8637 795 90109 459
Gen_M 8679 267 90604 450

In scenario 6 the users vote incorrectly 5% of the time.

Unfortunately, we observe for Gen_M that the number of
false negatives increases (compared to scenario 5). It
seems that 5% of incorrect votes is a critical limit for this
scenario.

Scenario 7
cam;1-10;48;360;720
usr;1-100;1-11;24;100;100
spm;101-105;1-11;1
scn;100;100;run(24);act(1,11,100,100)

Scn 7 tp fp tn fn

Basic 8781 17824 73124 271
Gen_F 8073 3073 87754 1100
Gen_M 8420 1345 89435 800

In scenario 7 we replaced the deniers by a spammer

team, who votes "1" at every speed camera position. The
other users are voting correctly 100% of the time. We

observe quite bad numbers for GenTE. We first thought of
a weakness in our trust engine, but further investigations
concluded that it is actually the simulator that presents a
weakness. The problem is that the positions of the
cameras are always the same (which is not the case in
reality), and that sometimes, by chance, a spammer really
signal a new speed camera, which generously increases its
trust value. In reality this would not be a problem, since
signaling randomly a real speed camera at the right place
is almost impossible.

Scenario 8
cam;1-10;48;360;720
usr;1-100;1-11;24;95;95
spm;101-105;1-11;1
scn;100;100;run(24);act(1,11,95,95)

Scn 8 tp fp tn fn

Basic 8595 18699 72115 591
Gen_F 7878 3471 87498 1153
Gen_M 8085 1403 89695 817

In scenario 8 the honest users are voting incorrectly 5%

of the time. We face the same weakness as in scenario 7.
We got therefore a bit worse results, since the honest users
are less reliable.

7. Conclusion

This paper presented a generic trust engine to manage
virtual tags. We saw that we couldn't simply use existing
trust algorithms, since virtual tags have some
particularities that need to be handled in a specific way.
For instance we faced what we called the "uncertainty of
the truth" problem, or how to rate a user if we cannot be
sure if he is honest or not. We saw that this situation can
happen in presence of an outdated tag. A user that sees a
tag about an object or an event that is not present is either
victim of a spam attack, in which case he should decrease
the trust value of the tag's author, or he simply sees a tag
that is outdated, in which case the author shouldn't be too
much penalized.

We designed and implemented a trust engine called
GenTE, which is able to exclude malevolent users but
which is sufficiently tolerant with honest users, even if
they do sometimes little mistakes. Since these mistakes are
inevitable in spatial messaging (due to the uncertainty of
the truth issue but also due to environmental ones, like a
tag over a partially hidden object), GenTE is able to
forgive small misbehaviors so that frequent users are not
penalized.

We personalized GenTE through rules and parameters
in order to adapt it for a speed cameras warning system
called FoxyTag. We chose FoxyTag to test GenTE
because the speed camera topic is quite complex (cameras

can appear and disappear at any time, some are partially
hidden...), and because it was easy to find volunteers to
test our application. We got very promising results.

8. References
[1] Google Earth Community website, visited the 5th of May
2008: http://bbs.keyhole.com/

[2] Google website, visited the 5th of May 2008:
http://www.google.com

[3] Tiny tiny blog, visited the 5th of May 2008:
http://www.alvafilm.ch/blog/tinytiny/?cat=3

[4] Burrell, Jenna, Gay, Geri K. (2002): E-graffiti: evaluating
real-world use of a context-aware system. In Interacting with
Computers, 14 (4) p. 301-312

[5] Persson, P., Espinoza, F., Fagerberg, P., Sandin, A., and
Cöster, R. GeoNotes: A Location-based Information System for
Public Spaces, in Höök, Benyon, and Munro (eds.) Readings in
Social Navigation of Information Space, Springer (2000)

[6] William G. Griswold, Patricia Shanahan, Steven W. Brown,
Robert S. Boyer, Matt Ratto, R. Benjamin Shapiro, Tan Minh
Truong: ActiveCampus: Experiments in Community-Oriented
Ubiquitous Computing. IEEE Computer 37(10): 73-81 (2004)

[7] N. Mezzetti, "A Socially Inspired Reputation Model", in
Proceedings of EuroPKI, 2004.

[8] R. Guha, "Open Rating Systems", 1st Workshop on Friend of
a Friend, Social Networking and the Semantic Web, 2004.

[9] S. Buchegger and J.-Y. Le Boudec, "A Robust Reputation
System for P2P and Mobile Ad-hoc Networks", in Proceedings
of the Second Workshop on the Economics of Peer-to-Peer
Systems, 2004.

[10] FoxyTag website, visited the 5th of May:
http://www.foxytag.com

[11] Sepandar D. Kamvar, Mario T. Schlosser, and Hector
Garcia-Molina. The Eigen-Trust Algorithm for Reputation
Management in P2P Networks. 2003.

[12] Prashant Dewan. Peer-to-Peer Reputations. Proceedings of
the 18th International Parallel and Distributed Processing
Symposium (IPDPS'04) IEEE.

[13] V. Cahill, et al. Using Trust for Secure Collaboration in
Uncertain Environments. IEEE Pervasive Computing Magazine,
July-September 2003.

[14] Michael Kinateder, Kurt Rothermel. Architecture and
Algorithms for a Distributed Reputation System. 2003.

[15] Aameek Singh, Ling Liu. TrustMe: Anonymous
Management of Trust Relationships in Decentralized P2P
Systems. Proceedings of the Third International Conference on
Peer-to-Peer Computing (P2P'03). IEEE.

[16] Anwitaman Datta, Manfred Hauswirth, Karl Aberer.
Beyond "web of trust": Enabling P2P E-commerce. Proceedings
of the IEEE International Conference on E-Commerce (CEC'03).

[17] R. Guha, "Open Rating Systems", 1st Workshop on Friend
of a Friend, Social Networking and the Semantic Web, 2004.

[18] N. Mezzetti, "A Socially Inspired Reputation Model", in
Proceedings of EuroPKI, 2004.

[19] S. Buchegger and J.-Y. Le Boudec, "A Robust Reputation
System for P2P and Mobile Ad-hoc Networks", in Proceedings
of the Second Workshop on the Economics of Peer-to-Peer
Systems, 2004.

[20] D. Quercia, S. Hailes, and L. Capra, "B-trust: Bayesian
Trust Framework for Pervasive Computing”, in Proceedings of
the 4th International Conference on Trust Management (iTrust),
LNCS, Springer, 2006.

[21] Pierpaolo Dondio and Stephen Barrett and Stefan Weber
and Jean Marc Seigneur, Extracting Trust from Domain
Analysis, a Study Case on the Wikipedia Project 3rd
International Conference on Autonomic and Trusted Computing
(ATC 2006) LNCS 4158, Wuhan, China, 2006, L.T. Yang et al.,
4158, Lecture Notes in Computer Science, pp. 362--373, sep,
Springer-Verlag

[22] Radar buster website, visited the 5th of May:
http://www.radarbusters.com/

[23] Mogoroad website, visited the 5th of May:
http://www.mogoroad.ch

[24] Smart speed website, visited the 5th of May:
http://www.smartspeed.fr/

[25] Coyote website, visited the 5th of May:
http://www.moncoyote.com/

[26] Inforad website, visited the 5th of May:
http://www.gpsinforad.co.uk/

[27] Data mining according to Wikipedia website, visited the 5th
of May 2008: http://en.wikipedia.org/wiki/Data_mining

[28] Book: "Trust Rules: How to Tell the Good Guys from the
Bad Guys in Work and Life (Hardcover)", by Linda K. Stroh,
Praeger Publishers (August 30, 2007), 184 pages, ISBN: 978-
0275998646

