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Abstract 
 

Current speed cameras alerting systems heavily rely on 

humans to check the trustworthiness of information sent 

by their users. Hence, these systems are often either 

expensive or suffer from drawbacks, such as incomplete 

information, for example, concerning mobile speed 

cameras. We propose an application called FoxyTag to 

address most of the previous issues by using a 

computational trust engine instead of human checks. 

FoxyTag lets any driver equipped with a Java/GPS-

enabled mobile phone post a virtual tag about a speed 

camera to notify other equipped drivers who can confirm 

or deny the (short-lived) presence of the (mobile) camera. 

The novel aspect of our trust engine is that it must be 

location and time aware to automatically compute the 

trustworthiness of the given tag. We have validated 

FoxyTag both in real-life settings and with a simulator 

for large-scale scenarios. The validation showed that our 

novel time-patterned trust metrics are appropriate. 

1. Introduction 

A few European countries have been multiplying the 

number of speed cameras in order to reduce the number 

of car accidents. To further assist the drivers, more and 

more companies sell information systems in order to warn 

the driver nearby a critical zone. Because these systems 

heavily rely on humans to check the trustworthiness of 

the information sent by their users, these systems are 

often either expensive or suffer from drawbacks. They 

have incomplete information, for example, they do not 

deal with mobile speed cameras. 

We propose a new system called FoxyTag that allows 

any driver equipped with a Java/GPRS-enabled mobile 

phone with access to a GPS (for example, we currently 

use affordable external Bluetooth GPS modules) to easily 

signal a speed camera or to signal that a former one has 

been removed. This is done by posting to our central 

server via GPRS virtual spatial messaging tags at the 

critical points, so that other drivers can be alerted on time 

by querying this server by affordable GPRS connections. 

The novelty of our system is that it does not require 

human checks to decide about the trustworthiness of the 

posted tags because our system uses a computational trust 

engine to automatically make this decision.  

Due to the fast context changing aspect of this 

application domain – mobile speed cameras are short 

lived – previous work on computational trust was 

challenged and we had to engineer novel time-patterned 

trust metrics.   

This paper is organized as follows. First, we survey the 

related work. In section 3, we present the requirements 

for an efficient speed camera tagging system. Section 4 

describes FoxyTag an application whose aims is to fulfill 

the requirements of Section 3. Section 5 explains why and 

how our new trust metrics go beyond the state-of-the-art. 

Section 6 describes the simulator that we have created 

and used for large-scale testing. Section 7 gives the 

results of our validation of the FoxyTag prototype in real 

life settings with real Java/GPS/GPRS-enabled mobile 

phones and real information from related online services. 

Section 8 validates our work with simulation results and 

completes the validation in the field. Section 9 highlights 

future work and concludes. 

2. Related Work 

The design of FoxyTag is based on the use of spatial 

messaging (virtual tags) and the quality of the service 

relies on a trust engine. There are many approaches in 

defining trust and there are many spatial messaging 

systems. In this section, we first survey the related work 

on computational trust and then the related work on 

spatial messaging. Finally, we give a summary of other 

related speed camera alerting systems. 

 

2.1. Computational Trust Survey 
 In the human world, trust exists between two 

interacting entities and is very useful when there is 

uncertainty in result of the interaction. The requested 

entity uses the level of trust in the requesting entity as a 

mean to cope with uncertainty, to engage in an action in 

spite of the risk of a harmful outcome. There are many 

definitions of the human notion trust in a wide range of 

domains, with different approaches and methodologies 

[27]: sociology, psychology, economics, pedagogy… 

These definitions may even change when the application 



domain changes. However, McKnight and Chervany have 

convincingly argued that these divergent trust definitions 

can fit together [20]. 

Interactions with uncertain result between entities also 

happen in the online world. So, it would be useful to rely 

on trust in the online world as well, as in our speed 

camera collaborative alerting application.  

A computational model of trust based on social 

research was first proposed by Marsh [13]. In social 

research, there are three main types of trust: interpersonal 

trust, based on past interactions with the trustee; 

dispositional trust, provided by the trustor’s general 

disposition towards trust, independently of the trustee; 

and system trust, provided by external means such as 

insurance or laws [20]. Trust in a given situation is called 

the trust context. Each trust context is assigned an 

importance value in the range [0,1] and utility value in the 

range [-1,1]. Any trust value is in the range [-1,1). In 

addition, each virtual identity is assigned a general trust 

value, which is based on all the trust values with this 

virtual identity in all the trust contexts. Dispositional trust 

appears in the model as the basic trust value: it is the total 

trust values in all contexts in all virtual identities with 

whom the trustor has interacted so far. Risk is used in a 

threshold for trusting decision making. 

2.1.1. Evidence-based Trust Value Computation. A 

computed trust value in an entity may be seen as the 

digital representation of the trustworthiness or level of 

trust in the entity under consideration. The trustcomp 

online community [21] defines entiTrust, that we consider 

in this paper as a trust value, as a non-enforceable 

estimate of the entity’s future behavior in a given context 

based on past evidence. The EU-funded SECURE project 

[18] represents an example of a trust engine that uses 

evidence to compute trust values in entities and 

corresponds to evidence-based trust management systems. 

Evidence encompasses outcome observations, 

recommendations and reputation. Sabater and Sierra 

remark that “direct experiences and witness information 

are the ‘traditional’ information sources used by 

computational trust and reputation models” [23]. 

Depending on the application domain, a few types of 

evidence may be more weighted in the computation than 

other types. When recommendations are used, a social 

network can be reconstructed [24]. A trust metric [30, 23, 

14] consists of the different computations and 

communications which are carried out by the trustor (and 

his/her network) to compute a trust value in the trustee. 

Figure 1 gives an overview of a trust engine. The 

decision-making component can be called whenever a 

trusting decision has to be made. The Entity Recognition 

(ER) module [14] bridges the gap between identity 

management and reputation by recognizing the entities 

involved in the interactions with attack resilience and 

privacy protection considerations. The decision-making 

of the trust engine uses the trust module to dynamically 

assess the trustworthiness of the requesting entity and 

evaluates the risk involved in the interaction based on the 

available trust and risk evidence in the evidence store. 

 

Figure 1. Overview of a Trust Engine 

A common decision-making policy is to choose (or 

suggest to the user) the action that would maintain the 

appropriate cost/benefit. In the background, the evidence 

manager component is in charge of gathering evidence 

(for example, recommendations, comparisons between 

expected outcomes of the chosen actions and real 

outcomes…). This evidence is used to update risk and 

trust evidence. Thus, trust and risk follow a managed life-

cycle. 

2.1.2. Time in Computational Trust. However, 

Dimmock, who took care of the risk module in the 

SECURE project, concludes in his PhD thesis that more 

work with regard to the risk of the situation must be done 

and especially with regard to the time element of risk: 

“one area that the framework does not currently address 

in great detail is the notion of time” [25].  

Concerning the trust context [27], most previous trust 

engines have focused on the domain of trustworthiness 

under consideration (for example, trustworthiness in 

writing good security books or trustworthiness in 

recommending good doctors) or the virtual identity of the 

requester/candidates. It seems that another type of trust 

from social research, that is, the “situational decision to 

trust […, which means that the trust engine’s owner] has 

formed an intention to trust every time a particular 

situation arises”, has been overlooked, even if it may be 

considered as imbricate with dispositional trust.    

In our speed camera application domain, our trust 

engine needs to filter the candidate speed camera alert 

tags based on: 

• the location, as explained in Section 4 our GPS-

based measurement technique does not introduce a high 

level of uncertainty; 

• the time of the camera installation and removal, 

which cannot be directly captured and is the reason to use 

a trust engine and collaborative recommendations to cope 

with the high level of uncertainty that it introduces. 

Guha [24] argues to have built a generic open rating 

system based on a trust engine, which means that 

anybody is allowed to rate anything in the system, 



including the ratings of contents. The contents may be 

considered as speed camera tags. However, even Guha 

argues that his work is limited with regard to time: “these 

[content/tag rating systems] are dynamic systems which 

can change quite rapidly. Understanding the time-

dependent properties of such systems and exploiting these 

properties is another potentially useful line of inquiry” 

[24]. 

In the Semantic Web application domain, the TriQL.P 

trust engine [26] is used to decide how much information 

found on the Web should be trusted. The main types of 

evidence are the context, which includes who and when, 

and content. Although their policy language allows the 

programmers to specify time dependent policies, no trust 

metric including the notion of time is given. Marsh [13] 

underlined the role of time as being relevant to each of 

the variables used in his trust model but again no specific 

time-dependent metric was given. The SECURE trust 

engine’s method to compute a trust value takes more than 

the identity context into account but no specific time-

sensitive metric implementation is given.   

Most of previous trust metrics consider from a time 

point of view that a trust value is updated only when a 

user manually resets [23, 30] a trust value in another 

entity or when there is the outcome of a previous 

interaction with this entity by means of direct 

observations or recommendations. 

The few trust metrics that takes further time into 

consideration simply proposes that the trust values decay 

over time, even if there is no interaction. Mezzetti [28] 

assumes that trust values decay as time passes and his 

metric consists of decreasing the trust value by 

multiplying the trust value at time t by a factor between 

zero and one, which is the result of a transitive aging 

function taking the elapsed time since t. Similarly, in 

recent Bayesian-based trust metrics [31, 32], the trust 

values are aged and converge towards their bootstrapping 

value over time but still the choice of the aging factor is 

rather arbitrary. It may work in rather continuous 

application domains but mobile speed cameras are short-

lived: they can be quickly installed and removed. When a 

speed camera is removed, the trustworthiness in the tag 

alert must drop promptly and trust metrics decreasing 

gracefully over time are not appropriate. It is the reason 

we have had to engineer and validate our novel time-

sensitive trust metrics, as we report in this paper in 

Section 5, for the spatial messaging application domain. 

2.2. Spatial Messaging Survey 
Spatial messaging, also called digital graffiti, air 

graffiti, or splash messaging, allows a user to publish a 

geo-referenced note so that any other user that attends the 

same place can get the message. Different usage scenarios 

can be found in the following projects that focus on 

spatial messaging and in [1]. 

2.2.1. E-Graffiti. E-Graffiti [3] is a spatial messaging 

application that allows a user to read and post geo-

localized notes. These notes can be either public or 

private, meaning that only the set of people defined by the 

author are able to read the note. E-Graffiti has been 

designed to study the social impacts on spatial messaging. 

57 undergraduate students were given a laptop with E-

Graffiti for a semester. All their activity has been logged 

and studied. An issue was that most of the posted notes 

were not related to their position. For example, a number 

of people posted notes to advertise a website, which 

underlines the need for tag trustworthiness. 

2.2.2. GeoNotes. GeoNotes [4] has more functionalities 

than E-Graffiti. While posting a note, the user can choose 

how he is going to sign it (for privacy reason the user can 

write any text he wants as a signature), decide whether 

people are allowed to comment it, and decide whether 

anyone can remove this message. For the readers, the 

graphical interface of the application provides some 

interesting functionalities like showing all the 

neighboring messages or sort them according to different 

criteria. Each user maintains also a friends list, which can 

be used as a filter. But the trust and security aspects are 

not strong because it is easy to usurp someone’s identity 

and post funny notes. An analysis of a GeoNotes log 

made during a real-use study showed that 6% of the 

messages have been signed using someone else’s identity. 

2.2.3. ActiveCampus Explorer. ActiveCampus Explorer 

[5] goes a step further by displaying also where other 

users are. Every user holds a PDA and its location is 

determined by comparing the signal strength of different 

wireless access points. Thus, the system knows the 

position of all its users, and communicates this 

information to all of them who are close enough. Like E-

Graffiti and GeoNotes, it is also possible to tag objects. 

2.2.4. SocialLight. Socialight [17] allows a user to post 

some data to a specific place, intended for himself, for his 

friends, or for everybody. Meta-data containing keywords 

and geographical coordinates are attached to the posted 

data, in order to facilitate searches. Tags are called 

Stickyshadows and can be viewed with some specific 

mobiles phones (equipped with a positioning system) via 

the Socialight Mobile application, or by browsing the 

Socialight website. A nice feature that they provide 

consists in showing Stickyshadows on maps. 

2.2.5. Context Watcher. Context Watcher [16] is a 

mobile phone application written in Python for Nokia 

Series 60 based on the MobiLife framework [19]. The 

first version of this application already uses the notion of 

confirmed buddy for security and trust purposes. It may 

be expected that the following version will use the 

MobiLife trust engine as specified in the MobiLife 

framework for other purposes. 



2.3. Speed Camera Services 
As the number of speed cameras increases on 

European roads, we find more and more services that help 

the driver to avoid expensive pictures. We will talk 

neither about illegal means (for the majority of European 

countries), like the radar detectors provided by 

RadarBusters [6], nor about non-technical means like 

phone centrals providing vocal information. We will 

concentrate here only on information systems that inform 

drivers about speed camera positions, which is legal 

according to the law of most European countries. 

2.3.1. SmartSpeed. SmartSpeed [7] is an application 

running on Windows Mobile that informs the driver about 

dangerous zones, traffic jams, and speed cameras. 

Working with all NMEA compatible Bluetooth GPS, the 

program compares the current position with the “events” 

to come and informs the user through a voice synthesizer. 

Maps and “events” files can be downloaded in advance, 

and a GPRS connection allows the user to get recent 

information. An interesting functionality allows any user 

to send a new event to the server, which will in turn 

inform all the users. A typical use consists in signaling 

mobile speed cameras to other drivers. Even if presented 

differently, it is clearly a way of doing spatial messaging. 

The light version a SmartSpeed is relatively cheap (30 € 

including free updates for one year) if you possess 

already a smartphone and a Bluetooth GPS. However, 

messages sent by other users to signal mobile speed 

cameras are not verified and are available only for one 

hour. And users are not really motivated to post such 

messages since they have nothing to gain in signaling a 

new “event”. SmartSpeed seems more adapted to signal 

fix speed cameras than mobile ones. 

2.3.2. Coyote. Coyote [8] is an independent system sold 

as a little box containing a GPS. When the driver 

approaches a speed camera, Coyote informs her/him 

orally about the remaining distance to this camera. To 

signal a new speed camera (or a new position for a mobile 

one), the user can simply press once the button on the top 

of the box. To signal a speed camera on the opposite 

direction, the user presses twice the button. This 

information is then sent to the server thanks to an 

included GPRS card, where a human operator verifies 

(previous messages of that user, comparison with other 

users, using another speed camera information service...) 

the plausibility of the information before broadcasting it 

to all users. Despite it is very simple to use, Coyote 

remains an expensive system (699 € for 2 years with 

unlimited use and including communication fees), which 

limits its user base. And if there are too few users, then 

the chance that a user is the first to discover a mobile 

speed camera (by being flashed!) is high. 

2.3.3. Natel-Futé. Natel-Futé [9] is a system that informs 

its users about traffic jams and mobile speed cameras via 

SMS. The user gets only textual information about the 

positions of the speed cameras. It is therefore not possible 

to be automatically informed when the users approach a 

critical point, like it is done by SmartSpeed or Coyote. 

And the price is quite expensive too, since the users have 

to pay about 170 € for one year.  

2.3.4. InfoRad. Autonomous and easy to use, InfoRad 

[10] beeps when the driver enters a “risky area”. All the 

risky areas, materialized with a speed camera, are stored 

in the on-board database. It works thus only with fix 

speed cameras and it is not possible to signal a new one to 

other drivers. It allows however a user to add its own 

risky areas for personal use. Their website provides time-

to-time updates of risky areas. The device with an 

unlimited access to their database costs about 200 €. 

2.3.5. POIplaces. A POI (Point Of Interest) is a geo-

referenced item that presents a particular interest, like a 

restaurant, a petrol stations, or a car park. Written in 

standard formats, POI lists can be used by most 

navigation systems. POIplaces [11] is a website where 

people can share their own POIs. One successful topic is 

speed cameras. In the same way than for restaurants or 

petrol stations, users can download for free the list of all 

speed cameras. Their navigation system can then be 

configured to emit a sound when they approach a POI. 

Free for everyone who already owns a GPS and a 

navigation device, this solution is however far from 

perfect. Since everybody can publish his/her POIs 

without any control, the speed cameras database is 

incomplete (lots of speed cameras are missing), redundant 

(several POIs for the same speed camera), incoherent 

(speed cameras have been found in a forest...), and mobile 

speed cameras are not taken into consideration.  

2.3.6. GpsPasSion. GpsPasSion [12] provides active 

forums about the different topics of the GPS world. Some 

of them are specialized in the speed cameras domain and 

aim to collect information about their positions. They 

provide from time-to-time an update of their POIs file 

that can be freely downloaded. Compared to POIplaces, 

the list is smaller (lots of speed cameras are missing), but 

is more consistent since they check the information before 

updating their list. Members that submit new positions 

have also access to a list containing the preferred places 

for mobile speed cameras. 

3. Towards an Efficient Speed Camera 

Tagging System 

We saw in section 2.3 - "Speed Camera Services" that 

there is no ideal solution for a reasonable price. Systems 

like Coyote are very expensive. Natel-Futé provides only 

textual information instead of coordinates. A few systems 



are more specifically (like Smartspeed) or even 

exclusively (like InfoRad) designed for fix speed 

cameras. And finally a few suffer from inconsistent, 

missing, incomplete and untrustworthy data (like 

POIplaces or GpsPasSion). We propose to build up on the 

previous work on computational trust described in 

Subsection 2.1 to achieve an efficient and safe application 

that informs drivers about speed cameras.  

In order to validate our ideas for the development of 

trusted spatial messaging, we have been developing 

GeoVTag. GeoVTag [1][2], which is a framework for 

reading and posting trusted spatial messages. It is 

designed to run on a Java/GPRS-enabled mobile phone 

coupled with a Bluetooth GPS. The architecture is 

centralized. Each server manages vTags (virtual tags) of a 

specific subject and each of them is identified by a 

different URL and works independently from the others. 

Any user can obtain anonymously all the vTags in his 

neighborhood just by querying the server. To become a 

member, and therefore be able to review vTags (add 

comments to an existing vTag) or be able to create new 

vTags, a user has to register. The registration process 

allows you to choose a pseudonym and returns a key pair 

(as in many previous frameworks [14]) that will be used 

each time to reconnect to the server. Technically, posting 

virtual tags is quite simple. During a vTag edition, the 

application gets also the GPS position and adds it as a 

meta-data. The whole is then sent via Internet (using the 

HTTP protocol) to a vTag server. For the vTag reading, 

the principle is similar. The mobile user sends its current 

position to the server (still using the HTTP protocol) 

which returns all the available vTags at the given position 

and its neighborhood. The size of the neighborhood is 

specified during the request. GeoVTag serves as the 

vehicle for further research in trust for spatial messages. 

The goal of GeoVTag is to provide a generic framework 

for the development of trust mechanisms and models for 

spatial messages. A reference implementation, called 

GeoVTagRI, will be sufficiently generic to suit several 

different services. A main advantage over other spatial 

messaging systems is the trust engine that automatically 

computes the trustworthiness of a vTag. Each vTag 

contains different trust values computed according to the 

current context, the marks given by reviewers, the 

reputation of the author, and the friends list of the reader. 

When the users participate, they become friends of users 

who rate like them and their alerts become personalized: 

this incentive to participate is a main advantage over 

SmartSpeed, which provides no incentive for users as 

mentioned in Subsection 2.3.1. A user can then easily 

determine how trustworthy a given vTag is. Based on the 

GeoVTag platform and in order to validate the trust 

mechanisms, we designed and implemented an advanced 

speed camera application: the FoxyTag application. 

4. The FoxyTag Application 

In this section we present our novel application which 

aims to solve most of the issues described in Section 2.3. 

4.1. Usage Scenario 
Our application, built on top of GeoVTag, works as 

follows: a driver runs the client application (or simply 

client) on her/his mobile phone. Coupled to a GPS or to 

another positioning device, the client knows permanently 

its position, expressed in latitude and longitude. 

According to its context (position and heading), and to 

the trust relations with his friends, the driver gets a 

personalized list of all the speed cameras she/he is 

susceptible to cross within the next few minutes. The 

client is then responsible to warn her/him when she/he 

approaches a critical point. We call protected zone the 

zone that is covered by the speed camera list. From time-

to-time, the client connects to the server to check if there 

are changes in the protected zone. It contacts also the 

server when it is close to leave the current protected zone, 

so that the server defines a new one and provides the 

corresponding speed camera list. 

When a driver gets a false alarm (she/he is alerted 

about a speed camera that does not exist), or when she/he 

crosses a speed camera, she/he signals it to the server, 

which can then update the user’s trust relationships. The 

more a user contributes, the more her/his trust 

relationships will evolve and become precise: the 

approach is based on computational trust as presented in 

subsection 2.1. In return, the user beneficiates of more 

correct alerts (closer to the reality). 

4.2. Initiating a First Connection 
To simplify the trust model and to avoid that the 

system becomes a Sybil attack [15] victim, we impose 

that a single user owns only one pseudonym. There are 

many means to achieve this goal [14]. It will depend on 

the identity scheme used and the GeoVTag model will be 

generic enough to accommodate any of these schemes by 

following the Entity Recognition (ER) approach [14]. 

One of them (the one that we have chosen for FoxyTag) 

simply consists in sending a reverse billing SMS (there 

are many phone company partners that provide such a 

service) containing a password. Then, each time the user 

connects to the server, she/he will identify herself/himself 

with her/his pseudonym and the corresponding password. 

Thus, any Sybil attack would be very costly (and 

unprofitable) due to the cost of the SMS at pseudonym 

creation time.   

4.3. Exchanged Messages 
Since Internet communications through a mobile 

phone are still quite expensive, our model tries to 

minimize them. A client sends only five different 



messages (we do not take into consideration the messages 

exchanged to establish the connection): 
• CPZ, latitude, longitude: CPZ is an abbreviation for 

Check Protected Zone. The message indicates to the 

server that the driver is currently at the position defined 

by the given latitude and longitude, and that she/he 

wants the protected zone to be checked. Checking is 

done in the following way: if there are changes in the 

current zone, or if the user is close to the border of the 

zone, then a new protected zone is computed. 

Otherwise, the server just answers that the current 

protected zone is still OK.  

• CAN, latitude, longitude, heading: CAN is an 

abbreviation for cancel. The message indicates that 

there is no, or not anymore, any speed cameras at the 

given position and for the given heading. The heading 

is important, it avoids that a user cancels a speed 

camera in the opposite direction. 

• MSC, latitude, longitude, heading: MSC is an 

abbreviation for Mobile Speed Camera. The message 

indicates that there is a mobile speed camera at the 

given position and for the given heading. 

• FSC, latitude, longitude, heading: FSC is an 

abbreviation for Fix Speed Camera. The message 

indicates that there is a fix speed camera at the given 

position and for the given heading. 

• OTC, latitude, longitude, heading: OTC is an 

abbreviation for Other Type of Camera. The message 

indicates that there is a camera that does not measure 

the speed of the driver (like the ones used to record 

registration numbers) at the given position and for the 

given heading. 

 

Headings are usually positive numbers between 0 and 

360 (0° = North, 90° = East, 180° = South and 270° = 

West), but it is possible to add a minus sign to indicate 

that the measurement has been taken from the opposite 

direction (for example a driver sees a mobile speed 

camera in the opposite direction). The server will 

therefore compute the correct heading, and, during trust 

computation, take into account that the precision of the 

positioning is not optimal.  

A message from the server is either an 

acknowledgement, to say for example that there is no 

change in the protected zone, or a list of speed cameras as 

well as information about the space covered by the new 

protected zone.  

 

4.4. Defining Protected Zones 
As a first approach, we thought that the ideal shape 

and size of a protected zone can be computed 

mathematically according to the context. For example, we 

guess we are in a city if the speed is low. In a city, the 

speed camera density is high and the users are susceptible 

to change often the heading, thus we would choose a 

small circle. Another example may be to guess that we are 

on a highway because the speed is high. We would then 

choose a thin (the chance that the car changes suddenly 

its heading is low) and long (the speed camera density is 

low) rectangle. But we were wrong. The speed and the 

heading is only a part of the context. For example, on a 

highway speed cameras usually form a line along the road 

(since highways are most of the time in the countryside), 

so a wide zone contains not necessarily more speed 

cameras than a thin one. Computing the ideal zone 

according to the context is far more complex than we 

could initially think, and this issue is therefore out of the 

scope of this paper.  

Since mathematics could not help us to define the best 

protected zones, we set up dozens of different 

hypothetical scenarios and deduced experimentally the 

best parameters. It came out that a circle with a diameter 

of 12 km suits in most of our scenarios. All the numbers 

presented in the rest of this paper are also deduced 

experimentally. 

When the user connects to the system (at time t0), the 

server defines a protected zone as a 12-km-diameter circle 

centered at the user's current position (see Figure 2). 

Every 5 minutes, or when the distance between the driver 

and the center of the circle is higher than 5.5 km, the 

client connects to the server and sends him a CPZ (Check 

Protected Zone) message. For example, in Figure 3, a 

driver follows a given path. At time t1, the driver is at 5.5 

km from the center (or he reached the internal circle in 

the figure). The client connects to the server which 

computes a new protected zone. To do that, the server 

draws a line between t0 and t1, prolongs it for 5.25 km, 

and defines the end of this line as the center of the second 

circle (see Figure 3). When the driver reaches t2 (5 

minutes after t1), the client sends a CPZ message. Since 

there is no change in the protected zone, the client keeps 

the same one. And finally, the process repeats when the 

driver reaches the internal circle of the second protected 

zone, at time t3. 

 

   

Figure 2   Figure 3 

If a user requests two new protected zone within a 

minute, the second one is centered on the driver’s current 

position. This could happen for example when the driver 

changes his/her heading just after the computation of a 

new protected zone, or if the driver goes round of a point 

that is between two protected zones. 
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4.5. Specific Rules 
The client must follow a few additional rules in order 

to behave in a similar way as the others, and therefore get 

the same chances in building good trust relationships. The 

first rule concerns speed cameras inside shadow zones 

(zones that prevent the client from knowing its current 

position, like in a tunnel). The rule says that if a speed 

camera is in a shadow zone, then the warning (message 

signaling the presence of a speed camera) must be posted 

at the shadow zone entry. Technically, the application 

always remembers the last position that it gets from the 

GPS, and uses it as the position of the shadow zone entry 

when the GPS becomes unable to make a fix. The second 

rule concerns speed cameras close to shadow zone exits. 

In order to leave enough time between the moment the 

device acquires a new positioning signal and the time the 

driver crosses a speed camera, the second rule imposes to 

use the coordinates of the shadow zone entry when 

posting a new message within ten seconds after exiting 

the shadow zone. 

5.  Time-sensitive Trust Metrics 

As explained above, mobile speed cameras can be 

installed and removed very quickly and we cannot 

directly measure their time of installation and removal as 

for the location measured by the GPS module. Thus, there 

is high uncertainty concerning the time aspect of context. 

The users can collaborate (but also collude) to confirm or 

deny the presence of a speed camera. However, the 

correctness of their vote strongly depends on time and 

worse not in a continuous manner. As soon as the speed 

camera is removed, a vote that confirmed that this camera 

exists drops from true to false, correct to incorrect. A 

decay function continuous over time or with mere a priori 

fixed discrete levels based on the elapsed time is not 

relevant. As surveyed in Subsection 2.1, the previous 

trust metrics that take time into considerations proposed 

such simple aging functions and are not suitable for our 

fast context changing application domain.   

To tackle our application domain, trust metrics with a 

more fine-grained integration of time than the time 

elapsed since the last interaction are needed. The first step 

in this direction is to timestamp each interaction and 

evidence. Once each piece of evidence has a timestamp, 

the trust metric can use this information for more complex 

analysis integrating time. For example, patterns in the 

evidence update can be detected and used to revise the 

trust value because the patterns trigger themselves 

revisions of evidence. For example, if a speed camera 

alert has been removed due to five users who have denied 

the presence of a camera against two who confirmed its 

presence, the outcome is that the two users were not 

correct. However, if the next user is flashed shortly 

afterwards, it may mean that the five denying users were 

malicious users. In this case, the outcome must be 

revised, which means that the two users were right and 

that their trust value should be revised. The second step 

for more fine-grained time-sensitive trust metrics is to 

allow the trust engine to use discrete time-based functions 

rather than arbitrary continuous decay function. For 

example, the continuous flow of user confirmations 

should not conceal a few recent consecutive denials that 

should lead to a quick removal of the alert. 

To set up a reference time-sensitive trust metric, we 

assumed a world where all users make very few mistakes 

when reporting their speed camera observation (in reality, 

it may happen when a user pushes the wrong mobile 

phone button) and are not malicious. In such a world, we 

assumed that when a user reports a new speed camera, the 

application should create a new alert because the cost of 

being flashed is much greater than to be disturbed by an 

alert. Then, if one user denies having seen a speed camera 

after an alert, the application should remove the alert, 

independently of the number of users who had confirmed 

the presence of the speed camera before.  

If we assume a world where the majority of users 

makes few mistakes (or are not malicious) and all users 

have approximately the same level of participation, this 

first discrete rule-based trust metric should be a quite 

good reference trust metric with quite good results. It is 

why we set up the trust engine with the following basic 

discrete TIme-Patterned (TIP) trust metric:  

• If a user sees and mentions a new camera, then a new 

tag is created. The default value of the tag trust value 

equals 0. 

• If a user sees and mentions an existing camera (one 

that was signalized by a tag), then the corresponding 

tag trust value is set to 1. 

• If a user gets an alarm about a camera that does not 

exist anymore and mentions it, the trust value of the 

corresponding tag is decreased by 1. 

• A tag whose trust value reaches -1 becomes an inactive 

alert. 

The main idea behind these rules is that if a user 

signals by mistake a new speed camera, then the next user 

can alone cancel the message, but if a second driver 

confirms the existence of a speed camera, then we need 

two people to remove a tag. Our simulation results in 

Section 8 confirm that when most of the users are not 

malicious, the assumption holds but when a few users are 

not able to use the application correctly (maybe they 

mixed the meaning of each button when they read the 

user’s guide) this first trust metric does not give decent 

results. 

To isolate such a minority of users who do not vote as 

the majority of users, we designed another trust metric 

that would probabilistically estimates the trust value of a 



user based on the outcomes of his/her past actions from 

the point of view of the whole community of users. 

Another requirement for our second trust metric was to 

approximately give results as good as the basic metric in 

the other cases. According to Ziegler and Lausen trust 

metrics taxonomy [30], this trust metric is a Global 

Centralized (GC) trust metric and we call it the TIP 

Probabilistic (TIPP) GC trust metric. In this TIPP GC 

trust metric, the future actions of the users who have a 

trust value below a threshold between 0 and 1 are 

ignored. The users cannot rebuild their trust and we 

assume it is fine because we said that we assume that a 

majority of users are able to correctly understand and use 

the application. The users who are not able to correctly 

report their observations can still receive the correct alerts 

anyway.      

However, due to the fact that a probabilistic approach 

requires a good deal of evidence before becoming 

accurate enough, we introduced a threshold number of 

outcome observations. When a user reports a new speed 

camera or votes for an existing alert (confirming or 

denying the presence of the camera), the trust engine 

decides to use either the basic trust metric if the number 

of direct observations about this user is below the 

threshold or the probabilistic trust metric if enough 

observations have been made to rely on probabilities. The 

default value that we used for this threshold is four. To 

further avoid the costly situations of not setting up an 

alert when a new real speed camera is reported, we set 

another threshold to only ignore a report of a new speed 

camera if the reporting user’s trust value is strictly below 

(by default 0.3). A final higher threshold is set up for the 

less costly CAN reports: the CAN report is ignored if the 

user who reports a CAN has a trust value strictly below 

this final threshold (by default 0.5).        

If an alert is created, the alert is alive until two 

following CANs are not ignored. 

The trust engine stores in P the count of the positive 

action outcomes of each user and in N the count of the 

negative outcomes. The trust value of the user is initially 

set to 0.5 and is computed as follows: 

PN

P
TrustValue

+

=  

The outcome of a user’s action (creation of a new alert 

or confirmation/denial of a live alert) is computed when 

the trust engine detects the following chronologically 

ordered actions patterns: 

• Action1, Action2, … , ActionN: this line means that N 

actions have been done from action1 to actionN in a 

chronological order. 

• Alert Creation, CAN, CAN: apparently, the first user 

created an alert about a speed camera that is not 

present. N of the alert creator is increased (although 

she/he might have been unlucky to create an alert on a 

speed camera that was removed just after creation; the 

time between creation and refutation may be taken into 

account in an extension of this metric). 

• Alert Creation, CAN, Confirmation, CAN, CAN: 

apparently, the first user created an alert about a speed 

camera that is not present. N of the creator is increased. 

• Alert Creation, Confirmation: apparently, the creator 

was right: P of the alert creator is increased. 

• Confirmation, Confirmation: P of the first confirming 

user is increased. 

• CAN, Confirmation, CAN, CAN: apparently, the user 

who confirmed the presence of the speed camera was 

wrong. N of the confirming user is increased and the Ps 

of all the three denying users are increased. 

• CAN, Confirmation, Confirmation: apparently, the first 

denying user was wrong and his/her N is increased. 

Figure 4 summarizes the default TIPP GC trust metric 

process. 
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Figure 4. TIPP GC Trust Metric Summary 

The final TIPP trust metric that we have developed 

consists of a Local Centralized (LC) trust metric [30]. The 

TIPP LC trust metric corresponds to the TIPP GC trust 

metric until the alert is presented to the requesting user. 

Just before the alert is presented to the user, an additional 

test is done: if the evidence supporting the alert comes 

from enough users who have had observations similar to 

the observations made by the requesting user, the alert is 

presented to the user; otherwise, the alert is ignored. The 

goal of the TIPP LC trust metric is to allow the users to 

have a personalized trust metric that is more resilient to 

collusion attacks as it has been done in the related work 

[31, 32]. Although this adjunct technique is a further line 

of defense against collusion, due to space limitation and 



no extra novelty in how we have reused this technique 

covered in the related work, we do not detail further this 

TIPP LC trust metric. 

6. Our Simulator 

In order to validate our new time-sensitive trust 

metrics, we set up a Java-based car traffic simulator that 

randomly positions speed cameras on a road and runs the 

user’s cars according to given scenario parameters. An 

additional user, whose behavior can also be completely 

specified, logs its observations and returns the number of 

true positives (alarm: yes, camera: yes), false positives 

(alarm: yes, camera: no), true negatives (alarm: no, 

camera: no) and false negatives (alarm: no, camera: yes).  

We model our road as a single way on a highway. 

Exits are numbered between 1 and n. Between two exits 

there is only one speed camera, numbered between 1 and 

n-1. So the camera c1 is between exits e1 and e2, the 

camera c2 is between exits e2 and e3, and so on. For 

example: 

e1    c1    e2    c2    e3    c3    e4 

+-----*-----+-----*-----+-----*-----+ 

This model does not make any difference between a 

mobile, a fixed or another type of camera (MSC, FCS and 

OTC are considered as the same message). This model 

seems to be very simplistic. It is however sufficient to 

validate our trust metrics. Of course, we do not take into 

account contextual information, like shadow areas or 

what happens when the user posts a message concerning 

the opposite direction. These are more technical issues 

that need to be validated in the field and that is what we 

actually did with a real device in a real car as detailed in 

Section 7. Since we can define the behavior of every user 

(where they enter and exit, how reliable they are by 

signaling speed cameras...) as well as the behavior of 

each speed camera (frequency of turning on, for how 

long...), we can precisely define which user drives in 

which area and how many speed cameras she/he is meant 

to cross on average.  

Our simulator accepts an input file that looks like this: 

cam;1-4;8;15  // three times a day, for 15 min. 

cam;5-5;24;2  // once a day, for 2 min. 

cam;5-5;240;3 // once every 10 days, for 3 min. 

usr;1-10;1-5;24;95;90  // 95% cp, 90% cn 

usr;1-1;3-5;240;80;75  // 80% cp, 75% cn 

usr;11-15;1-10;1;10;10 // hacker! 

usr;11-11;1-10;0;20;25 // hacker! 

col;5-7;1-11;6;10;100  // 10% cp, 100% cn 

scn;100;2;run(24);pas(1,10);act(1,10,50,60) 

scn;10;4;run(2400);pas(3,5);run(1);act(1,10,100 

• In the first line, “cam;1-4;8;15” means that cameras 1 

to 4 have one chance out of 8 to become active in an 

hour, and when one becomes active then it stays active 

for 15 minutes. 

• The two next lines define two different behaviors for 

the camera 5. 

• In the fourth line, “usr;1-10;1-5;24;95;90” means that 

users 1 to 10 entry the highway at 1 and exits it at 5, 

that they run once a day, and that they vote 95% of the 

time correctly when they signal the presence of a speed 

camera (cp, or correct positive), and 90% of the time 

correctly when they cancel a camera (cn, or correct 

negative). More precisely, this means that when a user 

sees a camera, she/he will send a MSC message 95% of 

the time, and a CAN message 5% of the time. And 

when she/he gets an alarm about a camera that does not 

exist (anymore), then she/he sends a CAN message 

90% of the time, and a MSC message 10% of the time. 

In the two cases, the user always votes. We do not take 

into account users that would “ignore” a vote, since a 

user that does not vote is like a user that does not exist, 

according to the system. 

• In the collusion line, “col;5-7;1-11;6;10;100” we 

deduce that users 5 to 7 are colluding by entering all at 

the same time on entry 1, exiting on exit 11, and voting 

(all similarly) about all 6 hours with 10% of correct 

positives and 100% of correct negatives. In other 

words, this collusion tries to cancel speed camera 

alerts. 

• The first scenario, “scn;100;2;run(24);pas(1,10); 

act(1,10,50,60)” contains 100 big loops and 2 small 

loops. The scenario itself will be executed twice, then 

the trust engine is initialized, and then we re-execute 

the scenario twice. And so on (100 times). In other 

words, the scenario is repeated 200 times, and the trust 

engine is initialized every 2 times. 

• run(t) means that the system will run for t hours 

(simulation time). Each minute, the go method of each 

camera and each user is called, allowing them to act 

according to their behavior. 

• pas(e1, e2) means that our test user will passively drive 

once from exit e1 to exit e2. Passively means that he 

does not vote. His observations are logged and printed. 

• act(e1, e2, cp, cn) means that our test user will actively 

drive once from exit e1 to exit e2 and has cp (correct 

positive) chances (in %) to vote correctly if he sees a 

speed camera, and cn (correct negative) chances (in %) 

to vote correctly when she/he tries to cancel a speed 

camera that does not exist (anymore). Her/his 

observations are logged and printed. 

• Comments is everything after a // and they are ignored. 

7. Results of the In-The-Field Validation  

The validation has been done by analysing the log files 

that where created while driving in different places in 

Switzerland. The client application runs on a Sony-

Ericsson K750 mobile phone, paired with a GlobalSat 

Bluetooth GPS (see Figure 5 below). 



 

Figure 5. FoxyTag Prototype Photograph 

We did essentially three main validations: protected 

zones, shadow areas, and precision of tags positions.  

To validate the concept of the protected zones 

computations, we used Google Earth and printed the 

different zones. The results were as expected. To estimate 

the costs of our system, we logged also the number of 

tags that were downloaded each time the client got a new 

protected zone. It came out that a 2-hour drive in a mixed 

area (cities and highways) required only 15 ko of data 

transfer. To overestimate our costs, we also computed that 

a user who would drive at 150 km/h in the Geneva city 

(Switzerland) would only require about 1000 

bytes/minute. According to the current GPRS prices in 

most European countries (2006), this corresponds to less 

than 1 € for a 2-hour trip. 

The shadow areas validation has simply be done by 

posting message from inside tunnels and checking via 

Google Earth that the corresponding tags were placed at 

the entry of these tunnels. The results were as expected. 

To estimate the precision of the tags positions, we did 

this last validation by driving twice on the same road. The 

first time we stopped at different points for a few seconds 

and measured the average position. The second time we 

placed the tags without stopping, using the 2-second rule. 

This rule has been set up experimentally and stipulates 

that, since the correct position is given two seconds too 

late (GPS satellites send data only once a second, refresh 

rate of the application...), a user must count in his head 

two seconds before posting the message. A former 

implementation counted these two seconds automatically, 

but our tests showed us that it is safer to leave two 

seconds more for the driver to press the button. The 

following Figure 6 shows a very dangerous road (holes, 

bumps...) in Wallis (Switzerland), where we decided to 

record all the critical points using our application. 

Driving at 80 km/h and using the 2-second rule, we 

observe that the second records (dangers_202 - 

dangers_204) are very close to the first ones 

(dangers_102 - dangers_104). Actually the biggest error 

is between danger_102 and dangers_202, where we have 

only 18 meters (the GPS’s precision is less than 10 

meters).  

 

Figure 6. Results on a Dangerous Road in Wallis 

8. Results of the Simulations 

To obtain a sufficiently high number of observations 

in order to compare with statistical confidence our basic 

TIP trust metric with our TIPP GC trust metric, we set up 

much more speed cameras than we would find in a real 

case. For example, we can compare for each trust metric 

the number of true positives (alarm: yes, camera: yes) 

with the number of false negatives (alarm: no, camera: 

yes), which represents in a way the money that the user 

saves. To simplify the reading of the results, we present 

them in tables and we use the following abbreviations: 

BASIC refers to the trust engine with the basic TIP trust 

metric, PROB for the trust engine with the TIPP GC trust 

metric, "TP yy" means true positives (alarm: yes, camera: 

yes), "FP yn" means false positives (alarm: yes, camera: 

no), "TN nn" means true negatives (alarm: no, camera: 

no) and "FN ny" means false negatives (alarm: no, 

camera: yes). 

Scenario 1: 

cam;1-10;24;180 

usr;1-100;1-11;24;95;95 

scn;100;100;run(24);act(1,11,95,95) 

We have 10 speed cameras that are turned on once a 

day (on average) for 3 hours, and 100 users who cross all 

of them once a day (on average) and who signal 95% of 

the time correctly what they observe. The scenario works 

as follows. The system runs for 24 hours and then our test 

user (the one that counts the TP, FP, TN and FN values) 

drives to all the speed cameras. This is repeated 100 times 

(small loop) before the trust engine is reinitialized. And 

the whole is repeated 100 times (big loop). This first basic 

scenario, containing only reliable users, can be considered 

as a reference for the next ones. 

Scenario 1 TP yy FP yn TN nn FN ny 

BASIC 10100 1845 87114 941 

PROB 10091 1860 87140 909 

We observe a diminution of 3.4 % in FN between 

BASIC and PROB. FN is the most important/costly value 

since in this case you cross a speed camera without being 

previously informed.  

 



 

Scenario 2: 

cam;1-10;24;180 

usr;1-100;1-11;24;95;95 

usr;101-200;1-11;24;75;75 

scn;100;100;run(24);act(1,11,95,95) 

In this second scenario we added one hundred users 

that vote less precisely (75% instead of 95%).  

Scenario 2 TP yy FP yn TN nn FN ny 

BASIC 10345 1011 87861 783 

PROB 10410 1020 87885 685 

Compared to scenario 1, it is interesting to note that 

adding 100 users, even if they are not very reliable (75%), 

helps to decrease the numbers of false positives (FP) and 

false negatives (FN). We observe also a diminution of 

12.5 % in FN when we compare BASIC with PROB. 

Scenario 3: 
cam;1-10;24;180 

usr;1-100;1-11;24;95;95 

usr;101-101;1-11;1;10;95 

scn;100;100;run(24);act(1,11,95,95) 

We took scenario 1 and added a malicious user (n° 

101) that votes for all the speed cameras once an hour, 

with 10% of correct positives and 95% of correct 

negatives. In other words, this user tries to cancels as 

much as possible tags that mention speed cameras. 

Scenario 5 TP yy FP yn TN nn FN ny 

BASIC 9624 1292 87473 1611 

PROB 10191 1565 87121 1123 

We observe a diminution of 30.3 % in FN between 

BASIC and PROB. 

Scenario 4: 

cam;1-10;24;180 

usr;1-100;1-11;24;95;95 

usr;101-200;1-11;1;10;95 

scn;100;100;run(24);act(1,11,95,95) 

Same as scenario 3, but with one hundred malicious 

users. 

Scenario 7 TP yy FP yn TN nn FN ny 

BASIC 1472 2 88887 9639 

PROB 2513 6 88861 8620 

There is a diminution of 10.6 % in FN between BASIC 

and PROB. 

Scenario 5: 

cam;1-10;24;180 

usr;1-100;1-11;24;95;95 

usr;101-200;1-11;1;50;95 

scn;100;100;run(24);act(1,11,95,95) 

Same as scenario 4, but we increased the number of 

correct positive votes (50% instead of 10%).  

Scenario 9 TP yy FP yn TN nn FN ny 

BASIC 7679 25 88717 3579 

PROB 8503 29 88751 2717 

We observe a diminution of 24.1 % in FN between 

BASIC and PROB. 

 

Scenario 6: 

cam;1-10;24;180 

usr;1-100;1-11;24;95;95 

usr;101-200;1-11;24;100;100 

scn;100;100;run(24);act(1,11,95,95) 

A scenario with only good guys: 100 of them vote 

correctly 95% of the time, and the other 100 vote 

correctly 100% of the time. This scenario is interesting 

when compared to the next one. 

Scenario 10 TP yy FP yn TN nn FN ny 

BASIC 10848 818 87896 438 

PROB 10673 946 87935 446 

We observe an increase of 1.8 % in FN between 

BASIC and PROB. 

Scenario 7: 

cam;1-10;24;180 

usr;1-100;1-11;24;95;95 

usr;101-200;1-11;24;100;100 

col;101-200;1-11;6;10;100 

scn;100;100;run(24);act(1,11,95,95) 

Similar to scenario 10, but users 101 to 200 collude 4 

times a day (in addition to their normal behavior). They 

vote similarly on all speed cameras with 10% of correct 

positive votes and 100% of correct negative votes. They 

try therefore to cancel valid tags. 

Scenario 11 TP yy FP yn TN nn FN ny 

BASIC 10395 862 88100 643 

PROB 10507 805 88107 581 

We observe a diminution of 9.6 % in FN between 

BASIC and PROB. 

Scenario 8: 
cam;1-10;8;180 

usr;1-100;1-11;24;95;95 

usr;101-110;1-11;6;5;5 

scn;100;100;run(24);act(1,11,95,95) 

In this scenario we observe what happens when 10% 

of the users mix the MSC and CAN messages (this can 

happen for example if the user’s manual is not clear 

enough, or if the user tries the system without reading it). 

Note that in order to get higher figures and therefore be 

able to make a more precise comparison, we increased the 

frequency of the speed cameras (three times a day instead 

off ones). 

Scenario 12 TP yy FP yn TN nn FN ny 

BASIC 21876 3935 69043 5146 

PROB 24591 4554 68350 2505 

We observe a diminution of 51.3 % in FN between 

BASIC and PROB. 



9. Conclusion 

The TIPP GC trust metric fulfils the requirements that 

we have set. First, in case there is a minority of users who 

do not act as the majority of users (either because they are 

not able to use the mobile phone application correctly or 

they are malicious), these users are more isolated than 

with the basic TIP trust metric. Second, in the other cases 

covered, the results of the TIPP GC trust metric are never 

dramatically worse than the basic TIP trust metric. Our 

work underlines that time has been overlooked in trust 

metrics and that previous trust metrics with simple time-

based decay function are not sufficient for an application 

domain with fast changing context such as FoxyTag.  

The FoxyTag application maintains trustworthy 

information without the cost of human manual checks and 

seems to be an affordable alternative to current speed 

camera alerting systems. 

In future work, we intend to extend and apply our 

work to other types of spatial messaging applications. 
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