

Trust and Security in Spatial Messaging:

FoxyTag, the Speed Camera Case Study

Michel Deriaz and Jean-Marc Seigneur

University of Geneva, Switzerland

{firstname.lastname} [at] unige.ch

Abstract

Current speed cameras alerting systems heavily rely on

humans to check the trustworthiness of information sent

by their users. Hence, these systems are often either

expensive or suffer from drawbacks, such as incomplete

information, for example, concerning mobile speed

cameras. We propose an application called FoxyTag to

address most of the previous issues by using a

computational trust engine instead of human checks.

FoxyTag lets any driver equipped with a Java/GPS-

enabled mobile phone post a virtual tag about a speed

camera to notify other equipped drivers who can confirm

or deny the (short-lived) presence of the (mobile) camera.

The novel aspect of our trust engine is that it must be

location and time aware to automatically compute the

trustworthiness of the given tag. We have validated

FoxyTag both in real-life settings and with a simulator

for large-scale scenarios. The validation showed that our

novel time-patterned trust metrics are appropriate.

1. Introduction

A few European countries have been multiplying the

number of speed cameras in order to reduce the number

of car accidents. To further assist the drivers, more and

more companies sell information systems in order to warn

the driver nearby a critical zone. Because these systems

heavily rely on humans to check the trustworthiness of

the information sent by their users, these systems are

often either expensive or suffer from drawbacks. They

have incomplete information, for example, they do not

deal with mobile speed cameras.

We propose a new system called FoxyTag that allows

any driver equipped with a Java/GPRS-enabled mobile

phone with access to a GPS (for example, we currently

use affordable external Bluetooth GPS modules) to easily

signal a speed camera or to signal that a former one has

been removed. This is done by posting to our central

server via GPRS virtual spatial messaging tags at the

critical points, so that other drivers can be alerted on time

by querying this server by affordable GPRS connections.

The novelty of our system is that it does not require

human checks to decide about the trustworthiness of the

posted tags because our system uses a computational trust

engine to automatically make this decision.

Due to the fast context changing aspect of this

application domain – mobile speed cameras are short

lived – previous work on computational trust was

challenged and we had to engineer novel time-patterned

trust metrics.

This paper is organized as follows. First, we survey the

related work. In section 3, we present the requirements

for an efficient speed camera tagging system. Section 4

describes FoxyTag an application whose aims is to fulfill

the requirements of Section 3. Section 5 explains why and

how our new trust metrics go beyond the state-of-the-art.

Section 6 describes the simulator that we have created

and used for large-scale testing. Section 7 gives the

results of our validation of the FoxyTag prototype in real

life settings with real Java/GPS/GPRS-enabled mobile

phones and real information from related online services.

Section 8 validates our work with simulation results and

completes the validation in the field. Section 9 highlights

future work and concludes.

2. Related Work

The design of FoxyTag is based on the use of spatial

messaging (virtual tags) and the quality of the service

relies on a trust engine. There are many approaches in

defining trust and there are many spatial messaging

systems. In this section, we first survey the related work

on computational trust and then the related work on

spatial messaging. Finally, we give a summary of other

related speed camera alerting systems.

2.1. Computational Trust Survey
 In the human world, trust exists between two

interacting entities and is very useful when there is

uncertainty in result of the interaction. The requested

entity uses the level of trust in the requesting entity as a

mean to cope with uncertainty, to engage in an action in

spite of the risk of a harmful outcome. There are many

definitions of the human notion trust in a wide range of

domains, with different approaches and methodologies

[27]: sociology, psychology, economics, pedagogy…

These definitions may even change when the application

domain changes. However, McKnight and Chervany have

convincingly argued that these divergent trust definitions

can fit together [20].

Interactions with uncertain result between entities also

happen in the online world. So, it would be useful to rely

on trust in the online world as well, as in our speed

camera collaborative alerting application.

A computational model of trust based on social

research was first proposed by Marsh [13]. In social

research, there are three main types of trust: interpersonal

trust, based on past interactions with the trustee;

dispositional trust, provided by the trustor’s general

disposition towards trust, independently of the trustee;

and system trust, provided by external means such as

insurance or laws [20]. Trust in a given situation is called

the trust context. Each trust context is assigned an

importance value in the range [0,1] and utility value in the

range [-1,1]. Any trust value is in the range [-1,1). In

addition, each virtual identity is assigned a general trust

value, which is based on all the trust values with this

virtual identity in all the trust contexts. Dispositional trust

appears in the model as the basic trust value: it is the total

trust values in all contexts in all virtual identities with

whom the trustor has interacted so far. Risk is used in a

threshold for trusting decision making.

2.1.1. Evidence-based Trust Value Computation. A

computed trust value in an entity may be seen as the

digital representation of the trustworthiness or level of

trust in the entity under consideration. The trustcomp

online community [21] defines entiTrust, that we consider

in this paper as a trust value, as a non-enforceable

estimate of the entity’s future behavior in a given context

based on past evidence. The EU-funded SECURE project

[18] represents an example of a trust engine that uses

evidence to compute trust values in entities and

corresponds to evidence-based trust management systems.

Evidence encompasses outcome observations,

recommendations and reputation. Sabater and Sierra

remark that “direct experiences and witness information

are the ‘traditional’ information sources used by

computational trust and reputation models” [23].

Depending on the application domain, a few types of

evidence may be more weighted in the computation than

other types. When recommendations are used, a social

network can be reconstructed [24]. A trust metric [30, 23,

14] consists of the different computations and

communications which are carried out by the trustor (and

his/her network) to compute a trust value in the trustee.

Figure 1 gives an overview of a trust engine. The

decision-making component can be called whenever a

trusting decision has to be made. The Entity Recognition

(ER) module [14] bridges the gap between identity

management and reputation by recognizing the entities

involved in the interactions with attack resilience and

privacy protection considerations. The decision-making

of the trust engine uses the trust module to dynamically

assess the trustworthiness of the requesting entity and

evaluates the risk involved in the interaction based on the

available trust and risk evidence in the evidence store.

Figure 1. Overview of a Trust Engine

A common decision-making policy is to choose (or

suggest to the user) the action that would maintain the

appropriate cost/benefit. In the background, the evidence

manager component is in charge of gathering evidence

(for example, recommendations, comparisons between

expected outcomes of the chosen actions and real

outcomes…). This evidence is used to update risk and

trust evidence. Thus, trust and risk follow a managed life-

cycle.

2.1.2. Time in Computational Trust. However,

Dimmock, who took care of the risk module in the

SECURE project, concludes in his PhD thesis that more

work with regard to the risk of the situation must be done

and especially with regard to the time element of risk:

“one area that the framework does not currently address

in great detail is the notion of time” [25].

Concerning the trust context [27], most previous trust

engines have focused on the domain of trustworthiness

under consideration (for example, trustworthiness in

writing good security books or trustworthiness in

recommending good doctors) or the virtual identity of the

requester/candidates. It seems that another type of trust

from social research, that is, the “situational decision to

trust […, which means that the trust engine’s owner] has

formed an intention to trust every time a particular

situation arises”, has been overlooked, even if it may be

considered as imbricate with dispositional trust.

In our speed camera application domain, our trust

engine needs to filter the candidate speed camera alert

tags based on:

• the location, as explained in Section 4 our GPS-

based measurement technique does not introduce a high

level of uncertainty;

• the time of the camera installation and removal,

which cannot be directly captured and is the reason to use

a trust engine and collaborative recommendations to cope

with the high level of uncertainty that it introduces.

Guha [24] argues to have built a generic open rating

system based on a trust engine, which means that

anybody is allowed to rate anything in the system,

including the ratings of contents. The contents may be

considered as speed camera tags. However, even Guha

argues that his work is limited with regard to time: “these

[content/tag rating systems] are dynamic systems which

can change quite rapidly. Understanding the time-

dependent properties of such systems and exploiting these

properties is another potentially useful line of inquiry”

[24].

In the Semantic Web application domain, the TriQL.P

trust engine [26] is used to decide how much information

found on the Web should be trusted. The main types of

evidence are the context, which includes who and when,

and content. Although their policy language allows the

programmers to specify time dependent policies, no trust

metric including the notion of time is given. Marsh [13]

underlined the role of time as being relevant to each of

the variables used in his trust model but again no specific

time-dependent metric was given. The SECURE trust

engine’s method to compute a trust value takes more than

the identity context into account but no specific time-

sensitive metric implementation is given.

Most of previous trust metrics consider from a time

point of view that a trust value is updated only when a

user manually resets [23, 30] a trust value in another

entity or when there is the outcome of a previous

interaction with this entity by means of direct

observations or recommendations.

The few trust metrics that takes further time into

consideration simply proposes that the trust values decay

over time, even if there is no interaction. Mezzetti [28]

assumes that trust values decay as time passes and his

metric consists of decreasing the trust value by

multiplying the trust value at time t by a factor between

zero and one, which is the result of a transitive aging

function taking the elapsed time since t. Similarly, in

recent Bayesian-based trust metrics [31, 32], the trust

values are aged and converge towards their bootstrapping

value over time but still the choice of the aging factor is

rather arbitrary. It may work in rather continuous

application domains but mobile speed cameras are short-

lived: they can be quickly installed and removed. When a

speed camera is removed, the trustworthiness in the tag

alert must drop promptly and trust metrics decreasing

gracefully over time are not appropriate. It is the reason

we have had to engineer and validate our novel time-

sensitive trust metrics, as we report in this paper in

Section 5, for the spatial messaging application domain.

2.2. Spatial Messaging Survey
Spatial messaging, also called digital graffiti, air

graffiti, or splash messaging, allows a user to publish a

geo-referenced note so that any other user that attends the

same place can get the message. Different usage scenarios

can be found in the following projects that focus on

spatial messaging and in [1].

2.2.1. E-Graffiti. E-Graffiti [3] is a spatial messaging

application that allows a user to read and post geo-

localized notes. These notes can be either public or

private, meaning that only the set of people defined by the

author are able to read the note. E-Graffiti has been

designed to study the social impacts on spatial messaging.

57 undergraduate students were given a laptop with E-

Graffiti for a semester. All their activity has been logged

and studied. An issue was that most of the posted notes

were not related to their position. For example, a number

of people posted notes to advertise a website, which

underlines the need for tag trustworthiness.

2.2.2. GeoNotes. GeoNotes [4] has more functionalities

than E-Graffiti. While posting a note, the user can choose

how he is going to sign it (for privacy reason the user can

write any text he wants as a signature), decide whether

people are allowed to comment it, and decide whether

anyone can remove this message. For the readers, the

graphical interface of the application provides some

interesting functionalities like showing all the

neighboring messages or sort them according to different

criteria. Each user maintains also a friends list, which can

be used as a filter. But the trust and security aspects are

not strong because it is easy to usurp someone’s identity

and post funny notes. An analysis of a GeoNotes log

made during a real-use study showed that 6% of the

messages have been signed using someone else’s identity.

2.2.3. ActiveCampus Explorer. ActiveCampus Explorer

[5] goes a step further by displaying also where other

users are. Every user holds a PDA and its location is

determined by comparing the signal strength of different

wireless access points. Thus, the system knows the

position of all its users, and communicates this

information to all of them who are close enough. Like E-

Graffiti and GeoNotes, it is also possible to tag objects.

2.2.4. SocialLight. Socialight [17] allows a user to post

some data to a specific place, intended for himself, for his

friends, or for everybody. Meta-data containing keywords

and geographical coordinates are attached to the posted

data, in order to facilitate searches. Tags are called

Stickyshadows and can be viewed with some specific

mobiles phones (equipped with a positioning system) via

the Socialight Mobile application, or by browsing the

Socialight website. A nice feature that they provide

consists in showing Stickyshadows on maps.

2.2.5. Context Watcher. Context Watcher [16] is a

mobile phone application written in Python for Nokia

Series 60 based on the MobiLife framework [19]. The

first version of this application already uses the notion of

confirmed buddy for security and trust purposes. It may

be expected that the following version will use the

MobiLife trust engine as specified in the MobiLife

framework for other purposes.

2.3. Speed Camera Services
As the number of speed cameras increases on

European roads, we find more and more services that help

the driver to avoid expensive pictures. We will talk

neither about illegal means (for the majority of European

countries), like the radar detectors provided by

RadarBusters [6], nor about non-technical means like

phone centrals providing vocal information. We will

concentrate here only on information systems that inform

drivers about speed camera positions, which is legal

according to the law of most European countries.

2.3.1. SmartSpeed. SmartSpeed [7] is an application

running on Windows Mobile that informs the driver about

dangerous zones, traffic jams, and speed cameras.

Working with all NMEA compatible Bluetooth GPS, the

program compares the current position with the “events”

to come and informs the user through a voice synthesizer.

Maps and “events” files can be downloaded in advance,

and a GPRS connection allows the user to get recent

information. An interesting functionality allows any user

to send a new event to the server, which will in turn

inform all the users. A typical use consists in signaling

mobile speed cameras to other drivers. Even if presented

differently, it is clearly a way of doing spatial messaging.

The light version a SmartSpeed is relatively cheap (30 €

including free updates for one year) if you possess

already a smartphone and a Bluetooth GPS. However,

messages sent by other users to signal mobile speed

cameras are not verified and are available only for one

hour. And users are not really motivated to post such

messages since they have nothing to gain in signaling a

new “event”. SmartSpeed seems more adapted to signal

fix speed cameras than mobile ones.

2.3.2. Coyote. Coyote [8] is an independent system sold

as a little box containing a GPS. When the driver

approaches a speed camera, Coyote informs her/him

orally about the remaining distance to this camera. To

signal a new speed camera (or a new position for a mobile

one), the user can simply press once the button on the top

of the box. To signal a speed camera on the opposite

direction, the user presses twice the button. This

information is then sent to the server thanks to an

included GPRS card, where a human operator verifies

(previous messages of that user, comparison with other

users, using another speed camera information service...)

the plausibility of the information before broadcasting it

to all users. Despite it is very simple to use, Coyote

remains an expensive system (699 € for 2 years with

unlimited use and including communication fees), which

limits its user base. And if there are too few users, then

the chance that a user is the first to discover a mobile

speed camera (by being flashed!) is high.

2.3.3. Natel-Futé. Natel-Futé [9] is a system that informs

its users about traffic jams and mobile speed cameras via

SMS. The user gets only textual information about the

positions of the speed cameras. It is therefore not possible

to be automatically informed when the users approach a

critical point, like it is done by SmartSpeed or Coyote.

And the price is quite expensive too, since the users have

to pay about 170 € for one year.

2.3.4. InfoRad. Autonomous and easy to use, InfoRad

[10] beeps when the driver enters a “risky area”. All the

risky areas, materialized with a speed camera, are stored

in the on-board database. It works thus only with fix

speed cameras and it is not possible to signal a new one to

other drivers. It allows however a user to add its own

risky areas for personal use. Their website provides time-

to-time updates of risky areas. The device with an

unlimited access to their database costs about 200 €.

2.3.5. POIplaces. A POI (Point Of Interest) is a geo-

referenced item that presents a particular interest, like a

restaurant, a petrol stations, or a car park. Written in

standard formats, POI lists can be used by most

navigation systems. POIplaces [11] is a website where

people can share their own POIs. One successful topic is

speed cameras. In the same way than for restaurants or

petrol stations, users can download for free the list of all

speed cameras. Their navigation system can then be

configured to emit a sound when they approach a POI.

Free for everyone who already owns a GPS and a

navigation device, this solution is however far from

perfect. Since everybody can publish his/her POIs

without any control, the speed cameras database is

incomplete (lots of speed cameras are missing), redundant

(several POIs for the same speed camera), incoherent

(speed cameras have been found in a forest...), and mobile

speed cameras are not taken into consideration.

2.3.6. GpsPasSion. GpsPasSion [12] provides active

forums about the different topics of the GPS world. Some

of them are specialized in the speed cameras domain and

aim to collect information about their positions. They

provide from time-to-time an update of their POIs file

that can be freely downloaded. Compared to POIplaces,

the list is smaller (lots of speed cameras are missing), but

is more consistent since they check the information before

updating their list. Members that submit new positions

have also access to a list containing the preferred places

for mobile speed cameras.

3. Towards an Efficient Speed Camera

Tagging System

We saw in section 2.3 - "Speed Camera Services" that

there is no ideal solution for a reasonable price. Systems

like Coyote are very expensive. Natel-Futé provides only

textual information instead of coordinates. A few systems

are more specifically (like Smartspeed) or even

exclusively (like InfoRad) designed for fix speed

cameras. And finally a few suffer from inconsistent,

missing, incomplete and untrustworthy data (like

POIplaces or GpsPasSion). We propose to build up on the

previous work on computational trust described in

Subsection 2.1 to achieve an efficient and safe application

that informs drivers about speed cameras.

In order to validate our ideas for the development of

trusted spatial messaging, we have been developing

GeoVTag. GeoVTag [1][2], which is a framework for

reading and posting trusted spatial messages. It is

designed to run on a Java/GPRS-enabled mobile phone

coupled with a Bluetooth GPS. The architecture is

centralized. Each server manages vTags (virtual tags) of a

specific subject and each of them is identified by a

different URL and works independently from the others.

Any user can obtain anonymously all the vTags in his

neighborhood just by querying the server. To become a

member, and therefore be able to review vTags (add

comments to an existing vTag) or be able to create new

vTags, a user has to register. The registration process

allows you to choose a pseudonym and returns a key pair

(as in many previous frameworks [14]) that will be used

each time to reconnect to the server. Technically, posting

virtual tags is quite simple. During a vTag edition, the

application gets also the GPS position and adds it as a

meta-data. The whole is then sent via Internet (using the

HTTP protocol) to a vTag server. For the vTag reading,

the principle is similar. The mobile user sends its current

position to the server (still using the HTTP protocol)

which returns all the available vTags at the given position

and its neighborhood. The size of the neighborhood is

specified during the request. GeoVTag serves as the

vehicle for further research in trust for spatial messages.

The goal of GeoVTag is to provide a generic framework

for the development of trust mechanisms and models for

spatial messages. A reference implementation, called

GeoVTagRI, will be sufficiently generic to suit several

different services. A main advantage over other spatial

messaging systems is the trust engine that automatically

computes the trustworthiness of a vTag. Each vTag

contains different trust values computed according to the

current context, the marks given by reviewers, the

reputation of the author, and the friends list of the reader.

When the users participate, they become friends of users

who rate like them and their alerts become personalized:

this incentive to participate is a main advantage over

SmartSpeed, which provides no incentive for users as

mentioned in Subsection 2.3.1. A user can then easily

determine how trustworthy a given vTag is. Based on the

GeoVTag platform and in order to validate the trust

mechanisms, we designed and implemented an advanced

speed camera application: the FoxyTag application.

4. The FoxyTag Application

In this section we present our novel application which

aims to solve most of the issues described in Section 2.3.

4.1. Usage Scenario
Our application, built on top of GeoVTag, works as

follows: a driver runs the client application (or simply

client) on her/his mobile phone. Coupled to a GPS or to

another positioning device, the client knows permanently

its position, expressed in latitude and longitude.

According to its context (position and heading), and to

the trust relations with his friends, the driver gets a

personalized list of all the speed cameras she/he is

susceptible to cross within the next few minutes. The

client is then responsible to warn her/him when she/he

approaches a critical point. We call protected zone the

zone that is covered by the speed camera list. From time-

to-time, the client connects to the server to check if there

are changes in the protected zone. It contacts also the

server when it is close to leave the current protected zone,

so that the server defines a new one and provides the

corresponding speed camera list.

When a driver gets a false alarm (she/he is alerted

about a speed camera that does not exist), or when she/he

crosses a speed camera, she/he signals it to the server,

which can then update the user’s trust relationships. The

more a user contributes, the more her/his trust

relationships will evolve and become precise: the

approach is based on computational trust as presented in

subsection 2.1. In return, the user beneficiates of more

correct alerts (closer to the reality).

4.2. Initiating a First Connection
To simplify the trust model and to avoid that the

system becomes a Sybil attack [15] victim, we impose

that a single user owns only one pseudonym. There are

many means to achieve this goal [14]. It will depend on

the identity scheme used and the GeoVTag model will be

generic enough to accommodate any of these schemes by

following the Entity Recognition (ER) approach [14].

One of them (the one that we have chosen for FoxyTag)

simply consists in sending a reverse billing SMS (there

are many phone company partners that provide such a

service) containing a password. Then, each time the user

connects to the server, she/he will identify herself/himself

with her/his pseudonym and the corresponding password.

Thus, any Sybil attack would be very costly (and

unprofitable) due to the cost of the SMS at pseudonym

creation time.

4.3. Exchanged Messages
Since Internet communications through a mobile

phone are still quite expensive, our model tries to

minimize them. A client sends only five different

messages (we do not take into consideration the messages

exchanged to establish the connection):
• CPZ, latitude, longitude: CPZ is an abbreviation for

Check Protected Zone. The message indicates to the

server that the driver is currently at the position defined

by the given latitude and longitude, and that she/he

wants the protected zone to be checked. Checking is

done in the following way: if there are changes in the

current zone, or if the user is close to the border of the

zone, then a new protected zone is computed.

Otherwise, the server just answers that the current

protected zone is still OK.

• CAN, latitude, longitude, heading: CAN is an

abbreviation for cancel. The message indicates that

there is no, or not anymore, any speed cameras at the

given position and for the given heading. The heading

is important, it avoids that a user cancels a speed

camera in the opposite direction.

• MSC, latitude, longitude, heading: MSC is an

abbreviation for Mobile Speed Camera. The message

indicates that there is a mobile speed camera at the

given position and for the given heading.

• FSC, latitude, longitude, heading: FSC is an

abbreviation for Fix Speed Camera. The message

indicates that there is a fix speed camera at the given

position and for the given heading.

• OTC, latitude, longitude, heading: OTC is an

abbreviation for Other Type of Camera. The message

indicates that there is a camera that does not measure

the speed of the driver (like the ones used to record

registration numbers) at the given position and for the

given heading.

Headings are usually positive numbers between 0 and

360 (0° = North, 90° = East, 180° = South and 270° =

West), but it is possible to add a minus sign to indicate

that the measurement has been taken from the opposite

direction (for example a driver sees a mobile speed

camera in the opposite direction). The server will

therefore compute the correct heading, and, during trust

computation, take into account that the precision of the

positioning is not optimal.

A message from the server is either an

acknowledgement, to say for example that there is no

change in the protected zone, or a list of speed cameras as

well as information about the space covered by the new

protected zone.

4.4. Defining Protected Zones
As a first approach, we thought that the ideal shape

and size of a protected zone can be computed

mathematically according to the context. For example, we

guess we are in a city if the speed is low. In a city, the

speed camera density is high and the users are susceptible

to change often the heading, thus we would choose a

small circle. Another example may be to guess that we are

on a highway because the speed is high. We would then

choose a thin (the chance that the car changes suddenly

its heading is low) and long (the speed camera density is

low) rectangle. But we were wrong. The speed and the

heading is only a part of the context. For example, on a

highway speed cameras usually form a line along the road

(since highways are most of the time in the countryside),

so a wide zone contains not necessarily more speed

cameras than a thin one. Computing the ideal zone

according to the context is far more complex than we

could initially think, and this issue is therefore out of the

scope of this paper.

Since mathematics could not help us to define the best

protected zones, we set up dozens of different

hypothetical scenarios and deduced experimentally the

best parameters. It came out that a circle with a diameter

of 12 km suits in most of our scenarios. All the numbers

presented in the rest of this paper are also deduced

experimentally.

When the user connects to the system (at time t0), the

server defines a protected zone as a 12-km-diameter circle

centered at the user's current position (see Figure 2).

Every 5 minutes, or when the distance between the driver

and the center of the circle is higher than 5.5 km, the

client connects to the server and sends him a CPZ (Check

Protected Zone) message. For example, in Figure 3, a

driver follows a given path. At time t1, the driver is at 5.5

km from the center (or he reached the internal circle in

the figure). The client connects to the server which

computes a new protected zone. To do that, the server

draws a line between t0 and t1, prolongs it for 5.25 km,

and defines the end of this line as the center of the second

circle (see Figure 3). When the driver reaches t2 (5

minutes after t1), the client sends a CPZ message. Since

there is no change in the protected zone, the client keeps

the same one. And finally, the process repeats when the

driver reaches the internal circle of the second protected

zone, at time t3.

Figure 2 Figure 3

If a user requests two new protected zone within a

minute, the second one is centered on the driver’s current

position. This could happen for example when the driver

changes his/her heading just after the computation of a

new protected zone, or if the driver goes round of a point

that is between two protected zones.

t0
t1 t3

 t2

t0
 t1

4.5. Specific Rules
The client must follow a few additional rules in order

to behave in a similar way as the others, and therefore get

the same chances in building good trust relationships. The

first rule concerns speed cameras inside shadow zones

(zones that prevent the client from knowing its current

position, like in a tunnel). The rule says that if a speed

camera is in a shadow zone, then the warning (message

signaling the presence of a speed camera) must be posted

at the shadow zone entry. Technically, the application

always remembers the last position that it gets from the

GPS, and uses it as the position of the shadow zone entry

when the GPS becomes unable to make a fix. The second

rule concerns speed cameras close to shadow zone exits.

In order to leave enough time between the moment the

device acquires a new positioning signal and the time the

driver crosses a speed camera, the second rule imposes to

use the coordinates of the shadow zone entry when

posting a new message within ten seconds after exiting

the shadow zone.

5. Time-sensitive Trust Metrics

As explained above, mobile speed cameras can be

installed and removed very quickly and we cannot

directly measure their time of installation and removal as

for the location measured by the GPS module. Thus, there

is high uncertainty concerning the time aspect of context.

The users can collaborate (but also collude) to confirm or

deny the presence of a speed camera. However, the

correctness of their vote strongly depends on time and

worse not in a continuous manner. As soon as the speed

camera is removed, a vote that confirmed that this camera

exists drops from true to false, correct to incorrect. A

decay function continuous over time or with mere a priori

fixed discrete levels based on the elapsed time is not

relevant. As surveyed in Subsection 2.1, the previous

trust metrics that take time into considerations proposed

such simple aging functions and are not suitable for our

fast context changing application domain.

To tackle our application domain, trust metrics with a

more fine-grained integration of time than the time

elapsed since the last interaction are needed. The first step

in this direction is to timestamp each interaction and

evidence. Once each piece of evidence has a timestamp,

the trust metric can use this information for more complex

analysis integrating time. For example, patterns in the

evidence update can be detected and used to revise the

trust value because the patterns trigger themselves

revisions of evidence. For example, if a speed camera

alert has been removed due to five users who have denied

the presence of a camera against two who confirmed its

presence, the outcome is that the two users were not

correct. However, if the next user is flashed shortly

afterwards, it may mean that the five denying users were

malicious users. In this case, the outcome must be

revised, which means that the two users were right and

that their trust value should be revised. The second step

for more fine-grained time-sensitive trust metrics is to

allow the trust engine to use discrete time-based functions

rather than arbitrary continuous decay function. For

example, the continuous flow of user confirmations

should not conceal a few recent consecutive denials that

should lead to a quick removal of the alert.

To set up a reference time-sensitive trust metric, we

assumed a world where all users make very few mistakes

when reporting their speed camera observation (in reality,

it may happen when a user pushes the wrong mobile

phone button) and are not malicious. In such a world, we

assumed that when a user reports a new speed camera, the

application should create a new alert because the cost of

being flashed is much greater than to be disturbed by an

alert. Then, if one user denies having seen a speed camera

after an alert, the application should remove the alert,

independently of the number of users who had confirmed

the presence of the speed camera before.

If we assume a world where the majority of users

makes few mistakes (or are not malicious) and all users

have approximately the same level of participation, this

first discrete rule-based trust metric should be a quite

good reference trust metric with quite good results. It is

why we set up the trust engine with the following basic

discrete TIme-Patterned (TIP) trust metric:

• If a user sees and mentions a new camera, then a new

tag is created. The default value of the tag trust value

equals 0.

• If a user sees and mentions an existing camera (one

that was signalized by a tag), then the corresponding

tag trust value is set to 1.

• If a user gets an alarm about a camera that does not

exist anymore and mentions it, the trust value of the

corresponding tag is decreased by 1.

• A tag whose trust value reaches -1 becomes an inactive

alert.

The main idea behind these rules is that if a user

signals by mistake a new speed camera, then the next user

can alone cancel the message, but if a second driver

confirms the existence of a speed camera, then we need

two people to remove a tag. Our simulation results in

Section 8 confirm that when most of the users are not

malicious, the assumption holds but when a few users are

not able to use the application correctly (maybe they

mixed the meaning of each button when they read the

user’s guide) this first trust metric does not give decent

results.

To isolate such a minority of users who do not vote as

the majority of users, we designed another trust metric

that would probabilistically estimates the trust value of a

user based on the outcomes of his/her past actions from

the point of view of the whole community of users.

Another requirement for our second trust metric was to

approximately give results as good as the basic metric in

the other cases. According to Ziegler and Lausen trust

metrics taxonomy [30], this trust metric is a Global

Centralized (GC) trust metric and we call it the TIP

Probabilistic (TIPP) GC trust metric. In this TIPP GC

trust metric, the future actions of the users who have a

trust value below a threshold between 0 and 1 are

ignored. The users cannot rebuild their trust and we

assume it is fine because we said that we assume that a

majority of users are able to correctly understand and use

the application. The users who are not able to correctly

report their observations can still receive the correct alerts

anyway.

However, due to the fact that a probabilistic approach

requires a good deal of evidence before becoming

accurate enough, we introduced a threshold number of

outcome observations. When a user reports a new speed

camera or votes for an existing alert (confirming or

denying the presence of the camera), the trust engine

decides to use either the basic trust metric if the number

of direct observations about this user is below the

threshold or the probabilistic trust metric if enough

observations have been made to rely on probabilities. The

default value that we used for this threshold is four. To

further avoid the costly situations of not setting up an

alert when a new real speed camera is reported, we set

another threshold to only ignore a report of a new speed

camera if the reporting user’s trust value is strictly below

(by default 0.3). A final higher threshold is set up for the

less costly CAN reports: the CAN report is ignored if the

user who reports a CAN has a trust value strictly below

this final threshold (by default 0.5).

If an alert is created, the alert is alive until two

following CANs are not ignored.

The trust engine stores in P the count of the positive

action outcomes of each user and in N the count of the

negative outcomes. The trust value of the user is initially

set to 0.5 and is computed as follows:

PN

P
TrustValue

+

=

The outcome of a user’s action (creation of a new alert

or confirmation/denial of a live alert) is computed when

the trust engine detects the following chronologically

ordered actions patterns:

• Action1, Action2, … , ActionN: this line means that N

actions have been done from action1 to actionN in a

chronological order.

• Alert Creation, CAN, CAN: apparently, the first user

created an alert about a speed camera that is not

present. N of the alert creator is increased (although

she/he might have been unlucky to create an alert on a

speed camera that was removed just after creation; the

time between creation and refutation may be taken into

account in an extension of this metric).

• Alert Creation, CAN, Confirmation, CAN, CAN:

apparently, the first user created an alert about a speed

camera that is not present. N of the creator is increased.

• Alert Creation, Confirmation: apparently, the creator

was right: P of the alert creator is increased.

• Confirmation, Confirmation: P of the first confirming

user is increased.

• CAN, Confirmation, CAN, CAN: apparently, the user

who confirmed the presence of the speed camera was

wrong. N of the confirming user is increased and the Ps

of all the three denying users are increased.

• CAN, Confirmation, Confirmation: apparently, the first

denying user was wrong and his/her N is increased.

Figure 4 summarizes the default TIPP GC trust metric

process.

New action Z by user U at t
n

Action

type

CAN?

Ignore action

U
observations
>=4 and

U
TrustValue

<0.5

?

U
observations
>=4 and

U
TrustValue

<0.3

?

An alert

is already

alive for

this zone

?

Confirm correct

alert

Deny correct alert

Create new alert

for this zone

If alert

previous

actions pattern

X, Y, … , Z
tn

detected

?

Yes

YesNo

Yes

No

No

Yes

An alert

is already

alive for

this zone

?

Yes

Update the Ps and Ns

of the involved users

according to the

patterns and rules

defined in the text...

No

If two following CANs, remove the alert for this zone

Figure 4. TIPP GC Trust Metric Summary

The final TIPP trust metric that we have developed

consists of a Local Centralized (LC) trust metric [30]. The

TIPP LC trust metric corresponds to the TIPP GC trust

metric until the alert is presented to the requesting user.

Just before the alert is presented to the user, an additional

test is done: if the evidence supporting the alert comes

from enough users who have had observations similar to

the observations made by the requesting user, the alert is

presented to the user; otherwise, the alert is ignored. The

goal of the TIPP LC trust metric is to allow the users to

have a personalized trust metric that is more resilient to

collusion attacks as it has been done in the related work

[31, 32]. Although this adjunct technique is a further line

of defense against collusion, due to space limitation and

no extra novelty in how we have reused this technique

covered in the related work, we do not detail further this

TIPP LC trust metric.

6. Our Simulator

In order to validate our new time-sensitive trust

metrics, we set up a Java-based car traffic simulator that

randomly positions speed cameras on a road and runs the

user’s cars according to given scenario parameters. An

additional user, whose behavior can also be completely

specified, logs its observations and returns the number of

true positives (alarm: yes, camera: yes), false positives

(alarm: yes, camera: no), true negatives (alarm: no,

camera: no) and false negatives (alarm: no, camera: yes).

We model our road as a single way on a highway.

Exits are numbered between 1 and n. Between two exits

there is only one speed camera, numbered between 1 and

n-1. So the camera c1 is between exits e1 and e2, the

camera c2 is between exits e2 and e3, and so on. For

example:

e1 c1 e2 c2 e3 c3 e4

+-----*-----+-----*-----+-----*-----+

This model does not make any difference between a

mobile, a fixed or another type of camera (MSC, FCS and

OTC are considered as the same message). This model

seems to be very simplistic. It is however sufficient to

validate our trust metrics. Of course, we do not take into

account contextual information, like shadow areas or

what happens when the user posts a message concerning

the opposite direction. These are more technical issues

that need to be validated in the field and that is what we

actually did with a real device in a real car as detailed in

Section 7. Since we can define the behavior of every user

(where they enter and exit, how reliable they are by

signaling speed cameras...) as well as the behavior of

each speed camera (frequency of turning on, for how

long...), we can precisely define which user drives in

which area and how many speed cameras she/he is meant

to cross on average.

Our simulator accepts an input file that looks like this:

cam;1-4;8;15 // three times a day, for 15 min.

cam;5-5;24;2 // once a day, for 2 min.

cam;5-5;240;3 // once every 10 days, for 3 min.

usr;1-10;1-5;24;95;90 // 95% cp, 90% cn

usr;1-1;3-5;240;80;75 // 80% cp, 75% cn

usr;11-15;1-10;1;10;10 // hacker!

usr;11-11;1-10;0;20;25 // hacker!

col;5-7;1-11;6;10;100 // 10% cp, 100% cn

scn;100;2;run(24);pas(1,10);act(1,10,50,60)

scn;10;4;run(2400);pas(3,5);run(1);act(1,10,100

• In the first line, “cam;1-4;8;15” means that cameras 1

to 4 have one chance out of 8 to become active in an

hour, and when one becomes active then it stays active

for 15 minutes.

• The two next lines define two different behaviors for

the camera 5.

• In the fourth line, “usr;1-10;1-5;24;95;90” means that

users 1 to 10 entry the highway at 1 and exits it at 5,

that they run once a day, and that they vote 95% of the

time correctly when they signal the presence of a speed

camera (cp, or correct positive), and 90% of the time

correctly when they cancel a camera (cn, or correct

negative). More precisely, this means that when a user

sees a camera, she/he will send a MSC message 95% of

the time, and a CAN message 5% of the time. And

when she/he gets an alarm about a camera that does not

exist (anymore), then she/he sends a CAN message

90% of the time, and a MSC message 10% of the time.

In the two cases, the user always votes. We do not take

into account users that would “ignore” a vote, since a

user that does not vote is like a user that does not exist,

according to the system.

• In the collusion line, “col;5-7;1-11;6;10;100” we

deduce that users 5 to 7 are colluding by entering all at

the same time on entry 1, exiting on exit 11, and voting

(all similarly) about all 6 hours with 10% of correct

positives and 100% of correct negatives. In other

words, this collusion tries to cancel speed camera

alerts.

• The first scenario, “scn;100;2;run(24);pas(1,10);

act(1,10,50,60)” contains 100 big loops and 2 small

loops. The scenario itself will be executed twice, then

the trust engine is initialized, and then we re-execute

the scenario twice. And so on (100 times). In other

words, the scenario is repeated 200 times, and the trust

engine is initialized every 2 times.

• run(t) means that the system will run for t hours

(simulation time). Each minute, the go method of each

camera and each user is called, allowing them to act

according to their behavior.

• pas(e1, e2) means that our test user will passively drive

once from exit e1 to exit e2. Passively means that he

does not vote. His observations are logged and printed.

• act(e1, e2, cp, cn) means that our test user will actively

drive once from exit e1 to exit e2 and has cp (correct

positive) chances (in %) to vote correctly if he sees a

speed camera, and cn (correct negative) chances (in %)

to vote correctly when she/he tries to cancel a speed

camera that does not exist (anymore). Her/his

observations are logged and printed.

• Comments is everything after a // and they are ignored.

7. Results of the In-The-Field Validation

The validation has been done by analysing the log files

that where created while driving in different places in

Switzerland. The client application runs on a Sony-

Ericsson K750 mobile phone, paired with a GlobalSat

Bluetooth GPS (see Figure 5 below).

Figure 5. FoxyTag Prototype Photograph

We did essentially three main validations: protected

zones, shadow areas, and precision of tags positions.

To validate the concept of the protected zones

computations, we used Google Earth and printed the

different zones. The results were as expected. To estimate

the costs of our system, we logged also the number of

tags that were downloaded each time the client got a new

protected zone. It came out that a 2-hour drive in a mixed

area (cities and highways) required only 15 ko of data

transfer. To overestimate our costs, we also computed that

a user who would drive at 150 km/h in the Geneva city

(Switzerland) would only require about 1000

bytes/minute. According to the current GPRS prices in

most European countries (2006), this corresponds to less

than 1 € for a 2-hour trip.

The shadow areas validation has simply be done by

posting message from inside tunnels and checking via

Google Earth that the corresponding tags were placed at

the entry of these tunnels. The results were as expected.

To estimate the precision of the tags positions, we did

this last validation by driving twice on the same road. The

first time we stopped at different points for a few seconds

and measured the average position. The second time we

placed the tags without stopping, using the 2-second rule.

This rule has been set up experimentally and stipulates

that, since the correct position is given two seconds too

late (GPS satellites send data only once a second, refresh

rate of the application...), a user must count in his head

two seconds before posting the message. A former

implementation counted these two seconds automatically,

but our tests showed us that it is safer to leave two

seconds more for the driver to press the button. The

following Figure 6 shows a very dangerous road (holes,

bumps...) in Wallis (Switzerland), where we decided to

record all the critical points using our application.

Driving at 80 km/h and using the 2-second rule, we

observe that the second records (dangers_202 -

dangers_204) are very close to the first ones

(dangers_102 - dangers_104). Actually the biggest error

is between danger_102 and dangers_202, where we have

only 18 meters (the GPS’s precision is less than 10

meters).

Figure 6. Results on a Dangerous Road in Wallis

8. Results of the Simulations

To obtain a sufficiently high number of observations

in order to compare with statistical confidence our basic

TIP trust metric with our TIPP GC trust metric, we set up

much more speed cameras than we would find in a real

case. For example, we can compare for each trust metric

the number of true positives (alarm: yes, camera: yes)

with the number of false negatives (alarm: no, camera:

yes), which represents in a way the money that the user

saves. To simplify the reading of the results, we present

them in tables and we use the following abbreviations:

BASIC refers to the trust engine with the basic TIP trust

metric, PROB for the trust engine with the TIPP GC trust

metric, "TP yy" means true positives (alarm: yes, camera:

yes), "FP yn" means false positives (alarm: yes, camera:

no), "TN nn" means true negatives (alarm: no, camera:

no) and "FN ny" means false negatives (alarm: no,

camera: yes).

Scenario 1:

cam;1-10;24;180

usr;1-100;1-11;24;95;95

scn;100;100;run(24);act(1,11,95,95)

We have 10 speed cameras that are turned on once a

day (on average) for 3 hours, and 100 users who cross all

of them once a day (on average) and who signal 95% of

the time correctly what they observe. The scenario works

as follows. The system runs for 24 hours and then our test

user (the one that counts the TP, FP, TN and FN values)

drives to all the speed cameras. This is repeated 100 times

(small loop) before the trust engine is reinitialized. And

the whole is repeated 100 times (big loop). This first basic

scenario, containing only reliable users, can be considered

as a reference for the next ones.

Scenario 1 TP yy FP yn TN nn FN ny

BASIC 10100 1845 87114 941

PROB 10091 1860 87140 909

We observe a diminution of 3.4 % in FN between

BASIC and PROB. FN is the most important/costly value

since in this case you cross a speed camera without being

previously informed.

Scenario 2:

cam;1-10;24;180

usr;1-100;1-11;24;95;95

usr;101-200;1-11;24;75;75

scn;100;100;run(24);act(1,11,95,95)

In this second scenario we added one hundred users

that vote less precisely (75% instead of 95%).

Scenario 2 TP yy FP yn TN nn FN ny

BASIC 10345 1011 87861 783

PROB 10410 1020 87885 685

Compared to scenario 1, it is interesting to note that

adding 100 users, even if they are not very reliable (75%),

helps to decrease the numbers of false positives (FP) and

false negatives (FN). We observe also a diminution of

12.5 % in FN when we compare BASIC with PROB.

Scenario 3:
cam;1-10;24;180

usr;1-100;1-11;24;95;95

usr;101-101;1-11;1;10;95

scn;100;100;run(24);act(1,11,95,95)

We took scenario 1 and added a malicious user (n°

101) that votes for all the speed cameras once an hour,

with 10% of correct positives and 95% of correct

negatives. In other words, this user tries to cancels as

much as possible tags that mention speed cameras.

Scenario 5 TP yy FP yn TN nn FN ny

BASIC 9624 1292 87473 1611

PROB 10191 1565 87121 1123

We observe a diminution of 30.3 % in FN between

BASIC and PROB.

Scenario 4:

cam;1-10;24;180

usr;1-100;1-11;24;95;95

usr;101-200;1-11;1;10;95

scn;100;100;run(24);act(1,11,95,95)

Same as scenario 3, but with one hundred malicious

users.

Scenario 7 TP yy FP yn TN nn FN ny

BASIC 1472 2 88887 9639

PROB 2513 6 88861 8620

There is a diminution of 10.6 % in FN between BASIC

and PROB.

Scenario 5:

cam;1-10;24;180

usr;1-100;1-11;24;95;95

usr;101-200;1-11;1;50;95

scn;100;100;run(24);act(1,11,95,95)

Same as scenario 4, but we increased the number of

correct positive votes (50% instead of 10%).

Scenario 9 TP yy FP yn TN nn FN ny

BASIC 7679 25 88717 3579

PROB 8503 29 88751 2717

We observe a diminution of 24.1 % in FN between

BASIC and PROB.

Scenario 6:

cam;1-10;24;180

usr;1-100;1-11;24;95;95

usr;101-200;1-11;24;100;100

scn;100;100;run(24);act(1,11,95,95)

A scenario with only good guys: 100 of them vote

correctly 95% of the time, and the other 100 vote

correctly 100% of the time. This scenario is interesting

when compared to the next one.

Scenario 10 TP yy FP yn TN nn FN ny

BASIC 10848 818 87896 438

PROB 10673 946 87935 446

We observe an increase of 1.8 % in FN between

BASIC and PROB.

Scenario 7:

cam;1-10;24;180

usr;1-100;1-11;24;95;95

usr;101-200;1-11;24;100;100

col;101-200;1-11;6;10;100

scn;100;100;run(24);act(1,11,95,95)

Similar to scenario 10, but users 101 to 200 collude 4

times a day (in addition to their normal behavior). They

vote similarly on all speed cameras with 10% of correct

positive votes and 100% of correct negative votes. They

try therefore to cancel valid tags.

Scenario 11 TP yy FP yn TN nn FN ny

BASIC 10395 862 88100 643

PROB 10507 805 88107 581

We observe a diminution of 9.6 % in FN between

BASIC and PROB.

Scenario 8:
cam;1-10;8;180

usr;1-100;1-11;24;95;95

usr;101-110;1-11;6;5;5

scn;100;100;run(24);act(1,11,95,95)

In this scenario we observe what happens when 10%

of the users mix the MSC and CAN messages (this can

happen for example if the user’s manual is not clear

enough, or if the user tries the system without reading it).

Note that in order to get higher figures and therefore be

able to make a more precise comparison, we increased the

frequency of the speed cameras (three times a day instead

off ones).

Scenario 12 TP yy FP yn TN nn FN ny

BASIC 21876 3935 69043 5146

PROB 24591 4554 68350 2505

We observe a diminution of 51.3 % in FN between

BASIC and PROB.

9. Conclusion

The TIPP GC trust metric fulfils the requirements that

we have set. First, in case there is a minority of users who

do not act as the majority of users (either because they are

not able to use the mobile phone application correctly or

they are malicious), these users are more isolated than

with the basic TIP trust metric. Second, in the other cases

covered, the results of the TIPP GC trust metric are never

dramatically worse than the basic TIP trust metric. Our

work underlines that time has been overlooked in trust

metrics and that previous trust metrics with simple time-

based decay function are not sufficient for an application

domain with fast changing context such as FoxyTag.

The FoxyTag application maintains trustworthy

information without the cost of human manual checks and

seems to be an affordable alternative to current speed

camera alerting systems.

In future work, we intend to extend and apply our

work to other types of spatial messaging applications.

10. References

[1] M. Deriaz, “Trust and Security for Spatial Messaging”, OSG

technical report, 2005.

[2] M. Deriaz, “GeoVTag”, OSG technical report, 2005.

[3] Burrell, Jenna, Gay, Geri K., “E-graffiti: evaluating real-

world use of a context-aware system”, in Interacting with

Computers, 2002.

[4] Persson, P., Espinoza, F., Fagerberg, P., Sandin, A., and

Cöster, R. GeoNotes, “A Location-based Information System

for Public Spaces”, in Höök, Benyon, and Munro (eds.),

Readings in Social Navigation of Information Space, Springer,

2000.

[5] William G. Griswold, Patricia Shanahan, Steven W. Brown,

Robert S. Boyer, Matt Ratto, R. Benjamin Shapiro, Tan Minh

Truong, “ActiveCampus: Experiments in Community-Oriented

Ubiquitous Computing”, IEEE Computer, 2004.

[6] Website: http://www.radarbusters.com/

[7] Website: http://www.smartspeed.fr/

[8] Website: http://www.moncoyote.com/

[9] Website: http://www.natel-fute.ch/

[10] Website: http://www.gpsinforad.co.uk/

[11] Website: http://poiplace.oabsoftware.nl/

[12] Website: http://www.gpspassion.com/forumsen/topic.

asp?TOPIC_ID=21763

[13] S. Marsh, “Formalising Trust as a Computational Concept”,

PhD Thesis, University of Stirling, 1994.

[14] J.-M. Seigneur, “Trust, Security and Privacy in Global

Computing”, PhD Thesis, Trinity College Dublin, 2005.

[15] John R. Douceur, “The Sybil attack”, in Proceedings of the

IPTPS02 Workshop, 2002.

[16] Website:

http://www.lab.telin.nl/~koolwaaij/showcase/crf/cw.html

[17] Website: http://socialight.com/

[18] Website: http://secure.dsg.cs.tcd.ie/

[19] Website: http://www.ist-mobilife.org/

[20] McKnight, D., and Chervany, N. L., “The Meanings of

Trust”, MISRC 96-04, University of Minnesota, 1996.

[21] Website: http://www.trustcomp.org/

[22] Sabater, J., & Sierra, C., “Review on Computational Trust

and Reputation Models”, Artificial Intelligence Review,

Kluwer, 2005.

[23] Golbeck, J., & Hendler, J., “Accuracy of Metrics for

Inferring Trust and Reputation in Semantic Web-based Social

Networks”, 2004.

[24] Guha, R., “Open Rating Systems”, 2004.

[25] Dimmock, N., “Using trust and risk for access control in

Global Computing”, PhD thesis, University of Cambridge,

2005.

[26] Bizer, C., Cyganiak, R., Gauss, T., & Maresch, O.: The

TriQL.P Browser, “Filtering Information using Context-,

Content- and Rating-Based Trust Policies”, paper presented at

the Semantic Web and Policy Workshop at the 4th International

Semantic Web Conference, 2005.

[27] J.-M. Seigneur., “AmbiTrust? Immutable and Context-

Aware Trust Fusion”, OSG technical report, 2005.

[28] N. Mezzetti, “A Socially Inspired Reputation Model”, in

Proceedings of EuroPKI, 2004.

[30] C.-N. Ziegler and G. Lausen, “Spreading Activation

Models for Trust Propagation”, in Proceedings of the

International Conference on e-Technology, e-Commerce, and e-

Service, IEEE, 2004.

[31] S. Buchegger and J.-Y. Le Boudec, “A Robust Reputation

System for P2P and Mobile Ad-hoc Networks”, in Proceedings

of the Second Workshop on the Economics of Peer-to-Peer

Systems, 2004.

[32] Quercia, D., Hailes, S., and Capra, L., “B-trust: Bayesian

Trust Framework for Pervasive Computing”, in Proceedings of

the 4th International Conference on Trust Management, LNCS,

Springer, 2006.

