Trust without Truth

Michel Deriaz
University of Geneva, Switzerland
Michel .Deriaz@cui.unige.ch

Abstract. Can we trust without any reliable truth information? Most trust
architectures work in a similar way: a trustor makes some observations, rates
the trustee, and makes recommendations to his friends. When he faces a new
case, he checks his trust table and uses recommendations given by trustworthy
friends to decide whether he will undertake a given action. But what if the
observations that are used to update the trust tables are wrong? How to deal
with what we call the "uncertainty of the truth"? This paper presents how
people that publish and remove virtual tags are able to create trust relations
between them. A simulator as well as a concrete and widely deployed
application have been used to validate our model. We observed good and
encouraging results in general, but also some weaknesses, brought out through
specific scenarios.

1 Introduction

Spatial messaging, also called digital graffiti, air graffiti, or splash messaging, alows
a user to publish a geo-referenced note so that any other user that attends the same
place can get the message. For example, let us consider the community of the Mt-
Blanc mountain guides. The members would like to inform their colleagues about
dangers in specific places or about vacancies in refuges. One guide can publish a
geo-referenced message that informs about a high risk of avalanches, and any other
guide that attends the same place will get the warning, and comment it if necessary.
It isakind of blog, in which editors and readers share the same physical place.

There are many reasons to believe that spatial messaging will become a wide
spread concept in a nearby future. Today, people use the connection capabilities of
their mobile phone mostly in one way, to download information. But in the same
way that people passed from television to Internet, the next generation of user will
probably become "active" and publish information. If we remember how fast the
computer power and the communication capabilities of these devices improve, and
the fact that there are today more modern mobile phones (with Internet connection)
than desktop computers in the world, we can easily paint a glorious future for mobile
technology. This assertion can be confirmed by the growing interest for location

2 Michel Deriaz

awareness. The success of Google Map Mobile [1], a service that alows you to
download maps on your mobile phone as well as POIs (Points Of Interest) wherever
you are, is an indicator of this growing interest. And Google Map Mobile is not
alone. There are more and more applications or Internet services for mobile users
that provide maps and other information related to your current position.

There are already some implementations of the spatial messaging concept, but
experiences realized with volunteers showed that there is only little interest in
posting notes. To our view, the main reason is that there is currently no trust
mechanism which informs about the reliability of the messages, thus preventing any
serious application. In our Mt-Blanc mountain guides example, even if the security
aspects will ensure that the posted messages are really posted by the mentioned
author, that no modifications of the original text can be made afterwards, and that the
service is available for everyone that is authorized, you still need a trust mechanism
to know how reputable the author is.

This paper proposes a generic model to handle the trust component in spatial
messaging. We validated it through a simulator and through a widely deployed
application called FoxyTag, which alows a driver to publish virtual tags near traffic
radars in order to warn the other drivers.

2 A new mode isrequired

Lots of work has aready been done in the trust context, and the obvious question
that arises is why not just using well-known trust models? The answer is simply that
it will not work. Indeed, traditional trust models are mainly designed with file
sharing or auctions applications in mind. In this case, people are rating each other
and when user A wants to download afile (or buy an item) from user B, he questions
the system in order to determine how trustworthy user B is. Currently, commercial
systems (like e-Bay) are using very basic centralized systems, and the academics are
suggesting solutions to transform such systems into peer-to-peer architectures. But
spatial messaging is noticeably different from file sharing or auctioning. First of all,
we want to take care about the context. For example time is important. Imagine that
you see during summer time a tag that warns about a high risk of avalanches. Even if
there is no snow anymore, it does not mean necessarily that the author was lying; it
can also mean that the tag has been written six month ago. Second, we believe that
trust cannot only be applied to users. The tags themselves have to maintain
information so that a user can compute how reliable it isto him.

In traditional computational trust, we usually agree over a set of axioms and
hypothesis. For instance, the "truth" is a notion that is common to al. A corrupted
file is seen as corrupted by everybody. In spatial messaging however, the truth is
context dependant. The truth becomes a subjective and temporal notion. Something
that istrue for one user is not necessarily true for the others. Something that is true at
acertain timeis not necessarily true later. We call this new notion the "uncertainty of
the truth". If user A posts atag saying "Dangerous path”, user B only knows that user
A finds this path dangerous. But A is perhaps just a tourist and the path is in no way

Trust without Truth 3

dangerous for user B, how can be a confirmed mountain guide. Or this path was
maybe dangerous because of the snow, which has melted away by the time.

To our view, trust is not only atool that can be used to exclude malevolent users
from a given system. Trust is also away of creating relationships between users that
behave in a similar way. Like in real life, each user has his own definition of what
the truth is. The aim is therefore to create trust relationships between people that
share the same definition.

3 Reated work

We aready tackled the time component in a paper that has been published in the
PST'06 proceedings [2]. In the survey, we wrote that severa authors are aware about
the difficulty to take the time into account, but no one proposed a trust model that
gracefully solved the problem, or at least it was not directly applicable to spatia
messaging. Dimmock [3], who realized the risk module in the EU-funded SECURE
project [4], concluded in its PhD thesis that "one area that the framework does not
currently address in great detail is the notion of time." Guha[5] built a generic trust
engine alowing people to rate the content and the former ratings. He recognized
however that in case of highly dynamic systems (like in spatial messaging where tags
can appear and disappear very quickly), "Understanding the time-dependent
properties of such systems and exploiting these properties is another potentially
useful line of inquiry." Most existing trust metrics update their trust values only after
a specific action, like a direct interaction or the reception of a recommendation. The
few trust engines that take the time component into consideration simply suggest that
the trust value decreases with the time. Mezzetti's trust metric [6] consists in
multiplying the trust value at time t by a constant between 0 and 1. We proposed in
[7] asimilar model that also takes into consideration the dispersion of the outcomes.
In Bayesian-based trust metrics [8, 9], the trust value converges to its initial value
over time. All these models work in situations where the changes occur slowly, but
are challenged in short-lived cases.

Our former time-patterned trust metric, called TIPP GC (TIme-Patterned
Probabilistic Global Centralized), was used in a collaborative application allowing to
signal speed cameras on mobile phones. A full description of the trust engine and the
application can be found at [2]. Even if we brought some novelties about the way we
updated the trust values, we still used a "traditional" way to store them, i.e. the
number of positive outcomes P and the number of negative outcomes N. The trust
value equaled P / (N + P). And under a certain trust value, the malevolent users were
simply excluded from the system. The problem with this kind of metrics is that it is
difficult to decrease the trust value of a user that behaved correctly for along time.
We suggest therefore, to be closer to the human way of handling trust, that any trust
value must decrease quickly in case of bad behavior. An honest user that becomes
malevolent must not be able to use its long term good reputation to subvert the
system.

4 Michel Deriaz

4 Our mod€

41 Overview

Spatial messaging is not a new concept [10, 11], but existing systems do not have a
trust mechanism, thus preventing any serious application. We can of course build a
trust engine for each application, but it is like reinventing the wheel each time.
Worse, the trust engine is the more complicated part.

Our solution to this problem consisted in building a framework that provides,
among other things, a generic trust engine. So that it becomes very easy to build new
applications using trusted virtual tags. Our framework, called GeoVTag, provides an
API that eases the devel opment of new applications using virtual tags.

To facilitate further comparisons, we introduce here a second scenario that is
quite different from the mountain guides one. It is FoxyTag, a collaborative system
to signal speed cameras on mobile phones. The idea consists in posting virtual tags
close to radars in order to warn other drivers. These users will then get an aarm
when they are closer than 15 seconds to a critical point, and a red point locating the
radar appears on their screen. A driver signals aradar by pressing the key "1" of his
mobile phone and signals that a radar disappeared (he gets an alarm but he does not
see any speed camera) by pressing "0".

Creating a single trust engine that fits al the different applications is a difficult
task. One reason is because the way we compute a trust value differs from one
situation to another. There are different classes of trust engines. For instance we have
situations where changes are unpredictable, like in the FoxyTag scenario where a
radar can appear or disappear at any time. What if you get an alarm but you do not
see any speed camera? You do not know if the former driver was a spammer (and
then you need to decrease its trust value) or if the radar simply disappeared. But
there are also situations where changes are more predictable. In the mountain guides
scenario, if someone warns about a danger of avalanches, he can easily put a
deadline to his tag, thus avoiding disturbing with an outdated tag a user attending the
same place six months later.

It is clear that we compute the trust differently when the tags are meant to change
often than in situations where the tags are meant to be stable. In the FoxyTag
scenario, we could handle differently fixed radars and mobile ones. A mobile speed
camera that disappears after a few hours is a "normal™ situation. But a fixed speed
camerathat disappears is an unusua situation, especialy if other neighboring radars
disappear aswell.

The GeoVTag framework provides a generic trust engine that can be easily
extended. Updates in the trust table are made according to the behaviors of the users,
and each of this update can be redefined and configured via rules and parameters.
Roughly speaking, the designer of a new application will have to code "how much a
specific behavior in a specific context costs in terms of trust value'. He will therefore
only have to code behaviors directly related to its application, leaving the framework
doing all the job of maintaining and managing the trust information.

Trust without Truth 5

The main idea of our trust engine is to remember only important or recent
information, like it is done in human communities. Tags and users keep a history of
their last or important transactions. To know whether a tag must be shown to the
user, the trust engine checks the n last reviews done by trustworthy users. A user is
trustworthy if its globa trust value, computed has a mix of the trustor's opinion
(based on former direct interactions) and the opinions of the trustor's friends (who
ask their own friends, and so on until a certain level), is above a certain threshold. A
trustor calls friend every user with who he has a good trust relationship, or better
said, each user with a good local trust value. That was how to get atag. When a user
rates a tag, he updates the trust values of the author and the former reviewers
according to rules and parameters that depend on the application. In certain cases, a
review can be done on both directions. For instance an author can update the trust
value of every reviewer that gives a positive rating, since they seem to share the
same opinion about the tag. However, these "reverse reviewings' must be configured
with greatest care, to avoid that a malevolent user rates automatically and positively
al the tags he crosses, in order to use its growing trust value to subvert the system.

42 AvTagin GeoVTag
A vTagisavirtual tag. It contains the following fields:

ID. A uniqueidentifier for thistag.
Author. The ID of the author. Thisfield, which is an integer, equals -1 when an
author decides to revoke its own tag.

e Position. The geographical position of the tag. Each tag is attached to a given
position, expressed in latitude and longitude.

Creation time. The time when the tag has been created.

Deadline. After the deadline, the tag is removed.

RD (Request to delete time). To avoid malevolent acts, it is not possible for a
user to directly remove a tag. Instead, when certain conditions are met (for
instance several usersthat rated the tag negatively), a"request to delete” is made
to the tag. Its value is the time the request is made, and external rules define
when the tag should be definitively removed.

e Content. The content of the tag. It is the application that decides how to
structure the content. For instance an application could decide that the content is
aways an URL, and that all the tags are coded in HTML.

o Reviewers. A user can agree or disagree with the content of a tag. A tag
contains a reviewers list that is sorted in an inverse chronological order. Each
review contains the current time, the ID of the reviewer, the rating, and possibly
some content (same format as the content written by the author).

These are the minimum fields required by the trust engine. An application designer
can however add his own ones, like for instance the area where the tag is visible,
under what condition it isvisible...

6 Michel Deriaz

43 Auserin GeoVTag

A user is composed of an ID and atrust table. After an interaction with user B, user
A updates the local trust value of B and places B on top of its list, so that there are
sorted in an inverse chronological order. Each trust value is simply an integer in the
range [tmin, tmax] SO that tyin < 0 < k. GeoVTag alows specifying rules to describe
how atrust value must be changed according to a given situation. A typical caseisto
have a linear way to increase a value (for instance adding n when you agree with a
tag) and an exponential way to decrease a value (for instance multiplying by m a
negative trust value). When -t.;,, is much bigger than t.., (for instance t.;, =-70 and
tmax =5), we imitate the human way of handling trust: Trust takes time to be built, we
forgive some small misbehaviors (exponential functions moves dowly at the
beginning), but when we loose trust in someone (one big disappointment or lots of
small disappointments) then it becomes very difficult to rebuild a good trust
relationship. We avoid that malevolent users switch between good behaviors (in
order to increase their trust value) and bad behaviors (in order to subvert the system).

It isimportant that our system forgives small mistakes in cases where the truth is
unknown. We recall here the driver that gets an alarm about a speed camera that does
not exist anymore. He will disagree with the author of the tag as well as with al the
people that agreed. He will therefore decrease their trust values since they are
perhaps spammers. But, most likely, the radar simply disappeared in the meantime
and they are not spammers. Our model is built to forget easily such mistakes, as long
as they do not happen too often, but to decrease quickly the trust values of
malevolent users.

The global trust value of a user is relative and is computed by the following
function:

global_trust = g* myOpinion + (1-q) * friendsOpinions, g=[0..1]

It is a recursive function where myOpinion is the loca trust value and
friendsOpinions is the average opinion of the n first friends (where local_trust >= 0).
These friends apply the same function, so they return a mix between their own
opinion and the average opinion of their own friends. And so on until we reached the
specified depth. This way of processing is fast (all the values are centralized) and
gives a good idea of the global reputation of a user. Typicaly, if we choose n=10
(number of friends) and a depth level of 3, then we have aready the opinion of 10° +
10" + 107 + 10%= 1111 reliable people, with more importance given to close friends.
The more q is big, the more the user gives importance to it own value. In situations
where people are susceptible of doing mistakes, this value is usualy quite small.

4.4 The GeoVTag framework

The GeoVTag framework facilitates the development of applications using virtual
tags. A simplified view of the framework can be seen in figure 1.

Trust without Truth 7

Tools
Application Trust Engine —
Users
rules+ params

Fig. 1 GeoVTag framework

vTags

The Tools box is used by the trust engine and can also be accessed by the
application. It contains mostly geographical related tools, like methods allowing
conversions or methods handling tags of different formats.

All accesses to the two databases (VTags and Users) are done via the trust engine.
The way the trust values are updated is defined via the rules and the parameters. In
short, an application designer will have to configure these rules (in practice he will
extend the trust engine class and rewrite the methods that code each specific
behavior), set the parameters, and then write its application.

The trust engine can be accessed via three main primitives:

setTag. This primitive simply creates a new tag. No trust mechanismis used.
getTags. Returns alist of tags. The requester specifies which filter he wants
to apply to the result. For instance, a user can ask to get al the tags in a
certain radius, with updated trust values for the author and the reviewers, and
let the application decide what to do. But he can also ask to get only the tags
that are above a certain trust level and ignore the others. Or he can apply a
personal filter and not use the trust mechanism at all, like asking all the tags
that are authored or reviewed by Alice.

e reviewTag. Reviewing atag means to rate it, optionally to add a comment,
and then update the trust tables of the reviewer, the author and the former
reviewers. The way the trust tables are updated is defined through the rules
and the parameters. The framework splits al the behaviors so that the
application developer can simply write the rules according to the needs of its
application.

5 Validation process

We chose a speed camera tagging application to validate our trust engine. The first
reason is because the question is quite complex. As we saw previously, radars can
appear and disappear at any time, and it is not always possible to know if a wrong
alarm is due to spammers or if it is actually the radar that just disappeared. To our
view, the speed camera application is a "top" problem, or a problem that deals with
al the possible cases. If our trust engine works for speed camera tagging, it should
also work for other applications. The second reason is that it was very easy to find
volunteers to test our system, since they could save their money while increasing the

8 Michel Deriaz

road safety. We set up a simulator that alowed us to test different scenarios
(spammers, users that try to delete al the tags...) as well as a widely deployed
application used to confirm the results of the simulator.

51 Thesimulator

Our simulator randomly positions speed cameras on a road and runs the user’s cars
according to given scenario parameters. An additional user, whose behavior can also
be completely specified, logs its observations and returns the number of true
positives (dlarm: yes, camera: yes), false positives (alarm: yes, camera: no), true
negatives (alarm: no, camera: no) and false negatives (alarm: no, camera: yes).

We model our road as a single way on a highway. Exits are numbered between 1 and
n. Between two exits there is only one speed camera, numbered between 1 and n-1.
So the camera cl is between exits el and €2, the camera c2 is between exits €2 and
€3, and so on. Figure 2 shows aroad model.

el cl e2 c2 e3 c3 ed
& T—a—0—& 10—
Fig. 2 Theroad model

This model seems to be very simplistic. It is however sufficient to validate our trust
metrics. Of course, we do not take into account some contextual information, like
shadow areas (tunnels, urban canyons...) or what happens when the user posts a
message concerning the opposite direction. These are more technical issues that need
to be validated in the field and it is what we actually did with areal device in areal
car. Since we can define the behavior of every user (where they enter and exit, how
reliable they are by signaling speed cameras...) as well as the behavior of each speed
camera (frequency of turning on, for how long...), we can precisely define which
user drives in which area and how many speed cameras he is meant to cross on
average. Our simulator accepts an input file that looks like this:

cam;1-4;8;15,10 // about three times a day, for 15 minutes, 10 minutes pause
cam;5-5;24;2,0 // about once aday, for 2 minutes, no pause

cam;5-5;240;3,30 // about once every 10 days, for 3 minutes, 30 minutes pause
usr;1-10;1-5;24;95;90 // once aday, 95% true positive, 95% true negative
usr;1-1;3-5;240;80;75 // once every 10 days, 80% true positive, 75% true negative
usr;11-15;1-10;1;10;10 // every hour, 10% true positive, 10% true negative (hacker!)
usr;11-11;1-10;0;20;25 // every minute, 20% true positive, 25% true negative (hacker!)
col;5-7;1-11;6;10;100 // 4 times a day, 10% true positive, 100% true negative
spm;20-23;1-10;1 I every hour

scn; 100;2;run(24);pas(1,10);act(1,10,50,60)

scn; 10;4;run(2400); pas(3,5);run(1);act(1,10,100,100);run(2);act(1,10,100,100)

Trust without Truth 9

e Inthe first ling, "cam;1-4;8;15,10" means that cameras 1 to 4 have one chance
out of 8 to become active within an hour, and when one becomes active then it
stays active for 15 minutes. After it stays inactive (paused) for at least 10
minutes. Note that these cameras will on average become active less than 3
times a day, since they cannot switch to active while there are aready active or
paused. Precisely, these cameras will become active every 8+(15+10)/60 = 8.42
hours.

The next two lines define two different behaviors for camera 5.

In the fourth line, "usr;1-10;1-5;24;95;90" means that users 1 to 10 entry the
highway at 1 and exitsit at 5, that they run once a day and that they vote 95% of
the time correctly when they signal the presence of a speed camera, and 90% of
the time correctly when they cancel acamera.

e In the collusion line, "col;5-7;1-11,6;10;100", we deduce that users 5 to 7 are
colluding by entering all at the same time on entry 1, exiting on exit 11, and
voting (all similarly) about al 6 hours with 10% of true positives and 100% of
true negatives.

e In the spam ling, "spm;20-23;1-10;1", we deduce that users 20 to 23 spam by
entering al at the same time on entry 1, exiting on exit 10, and voting 1 about
every hour at every speed camera place.

o The first scenario, "scn;100;2;run(24);pas(1,10);act(1,10,50,60)" contains 100
big loops and 2 small loops. The scenario itself will be executed twice, then the
trust engine is initialized, and then we re-execute the scenario twice. And so on
(100 times).

e run(t) means that the system will run for t hours (simulation time). Each minute,
the go method of each camera and each user is called, allowing them to act
according to their specified behaviors.

o pas(el, e2) means that our test user will passively drive once from exit el to exit
e2. Passively means that he does not vote. His observations are logged and
printed.

o act(el, 2, tp, tn) means that our test user will actively drive once from exit el to
exit €2 and has tp (True Positive) chances (in %) to vote correctly if he sees a
speed camera, and tn (True Negative) chances (in %) to vote correctly when he
tries to cancel a speed camera that does not exist (anymore). His observations
are logged and printed.

e Everything after a// isa comment and isignored by the ssimulator.

5.2 Real lifeevaluation: FoxyTag

The simulator allows us to test the trust models, but how to be sure that our simulator
acts in a way that is close to reality? To answer this question, we tested our model
with FoxyTag [12], a collaborative system to signal radars on mobile phones.
FoxyTag motivates neither speeding nor any other risky behavior, but allows the
driver to concentrate on the road instead of having is eyes fixed on the speedometer,
by fear of being flashed. We observe that drivers tend to brake suddenly when they
see a radar (even if they are not speeding), which can provoke traffic jams or even
accidents. FoxyTag signals in advance the presence of speed cameras, so that the

10 Michel Deriaz

driver has enough time to check its speed and adapt it if necessarily. A more
technical description of this application can be found at [13].

5.3 Rulesand parametersfor the speed camera application

Each new user has an initial trust value equal to 0. A user is meant to send "1" if he
sees aradar, or "0" if he gets an alarm but does not see any radar. If the application
getsa"1" and there is no neighboring camera (less than 150 meters), it is considered
as acreation of anew tag. If thereis aneighboring camera, this"1" is considered as a
positive rating for the existing one. A "0" is therefore considered as a negative rating.
The main parameters are the following:

e Minimum trust value. t,, = -70. A malevolent user can have a trust value as
low as -70. This is to make sure that a malevolent user cannot easily regain a
good reputation in order to subvert the system a second time.

e Maximum trust value. t,o = 5. It is not possible to have a trust value higher
than 5. The reason is that a user can suddenly change its behavior and become
malevolent. This means that even if a user behaved correctly for many years, he
will not be able to use his past good behavior to subvert the system.

e Size of the history. It is the number of ratings that a tag keeps in memory. A
new rating will automatically erase the oldest one. If a user aready rated a tag,
the old rating is deleted and the new one is put on top of the list. We chose 10
for this value, so we keep only recent information. This value could seem small,
but is perfectly adapted to an environment where changes can happen very
suddenly.

o Number of contacts. Thisis the number of contacts that each user keeps, or the
size of its trust table. Each time the user modifies the trust value of another user,
the later takes the first place in the trust table. If a new user appears and there is
no place in the trust table, the last one (the one that did not get any rating for the
longest time) is removed. We chose 1000 for this number.

o Weight of user's opinion. We saw previously that the reputation of a user is
computed as a mix of the user's own value (local trust value) and the one given
by its friends. This parameter defines the weight to give to the user's opinion.
We chose 0.2, meaning that we take 20% of the user's own opinion and 80% of
his friends' opinions.

o Number of levels. When we need the global trust value for a given user, we ask
our friends, who ask their own friends, and so on up to a certain level. We chose
2, meaning that we get the opinion of our friends and the friends of our friends.

e Request to delete threshold. The number of successive users that must deny the
tag (voting 0) in order to make arequest to delete. We chose 2 for this value.

The rules are described below:

e Votelfor 1. Confirming atag. The 8 first people that confirm atag increase by
5 the author's trust value and the author does the same with these reviewers.

Trust without Truth 11

e Votelfor 0. The previous reviewer denied the tag, but it seems the radar still
exists. Its trust value is decreased by 3. It is not reasonable to decrease by more
than 3 since it can simply be a misuse (mixing up buttons...) of the application.
And since there must be at least 2 successive reviewers that deny the tag before
arequest to delete is made, this error will not harm the quality of the system.

e Votelfor 00. Thetwo previous reviewers denied the tag, but it seems the radar
still exists. This time the chance of being a misuse is reduced and this pattern
could be considered as two malevolent users trying to remove the tag. Their trust
values are updated liket' =t * 1.5 - 5, so that a misuse can be easily forgiven but
if this behavior is repeated then the trust value falls quickly.

e Vote O for 1. The previous reviewer confirmed the existence of the speed
camera but it seems that there is no radar anymore. It can reflect a normal
situation (the radar simply disappeared), so the trust value should not be
decreased too much. But it can also be the result of a spammer attack. Since a
spammers attack is less dangerous than a deniers one, we observed that
decreasing the trust value by 1 in this case is not too penalizing for honest users,
and still sufficient to exclude spammersin areasonable delay.

e VoteOfor 0. This case happens when a second user denies atag. The two users
increase mutually their trust value by 5.

o Request to delete. This rule defines when atag that got arequest to delete order
(in our case after two successive disapprovals) should be removed. We decided
to keep it for the same amount of time than elapsed between the creation time
and the request to delete order, but for at least 6 hours and at maximum 50 days.
A long term tag (for instance a fixed speed camera) will therefore need more
time to be deleted. The minimum of 6 hours avoids that two malevolent users
scan the network and delete all the tags as soon as they appear without being
penalized by the trust engine.

These rules motivate the users participation. Posting or confirming a tag increases
trust relationships. We could think that it is not a good idea to deny a tag when the
radar disappeared. It istrue that in such a case we decrease (-1) the trust value of the
previous reviewer who was probably an honest user. But on the other hand, we will
build a bidirectional trust relationship with the second user that will deny the tag, and
the increase of the trust values (2 times +5) compensates generously the former loss.

6 Resaults

In addition to our new trust model, we ran aso the simulator on two very easy trust
engines that have been used for comparison. The first is called "Test" and simply
adds atag when auser sendsa"1" and removes it when a"0" is sent. The second one
iscalled "Basic" and works as follow:

o If a user sees and mentions a new camera, a new tag is created. The default
value of its counter equals 0.

12 Michel Deriaz

e If a user sees and mentions an existing camera (one that was signalized by a
tag), the corresponding tag counter is set to 1.

e |If auser gets an alarm about a camera that does not exist anymore and mentions
it, the counter of the corresponding tag is decreased by 1.

e A tag whose counter reaches -1 is deleted.

The main idea behind these rules is that if a user signals by mistake a new speed
camera, then the next user can aone cancel the message, but if a second driver
confirms the existence of a speed camera, then we need two people to remove the
tag.

Now let's see the scenarios and the results. Scenario 1 tests our trust engine when
malevolent userstry to remove al the tags.

Scéqirol-g:gggggg-o M o [ooy [w0-m |-y
cam 2295 ' Test | 43470 0 0| s6530
usr;1-100;1-11;24;100;100 Bas 59450 0 o | 20550
usr;101-105;1-11:1;0;100 ¢

sc 99781 0 o| 219

scn; 100;100;run(24);act(1,11,100,100)

We have 10 radars that are always turned on, a hundred users that behave aways
correctly and five users that systematically try to cancel all speed cameras they cross.
Each hacker runs on average 24 times more often than an honest user. In the results
table we compare the Test, the Basic and the SC (we call our new trust engine
SpeCam) trust engines. We used also the following abbreviations. "tp - yy" means
true positives (alarm: yes, camera: yes), "fp - yn" means false positives (alarm: yes,
camera no), "“tn - nn" means true negatives (alarm: no, camera: no) and "fn - ny"
means fal se negatives (alarm: no, camera: yes).

With the Test trust engine, we see that there are more false negatives (alarm: no,
camera: yes) than true positives (alarm: yes, camera: yes). This is norma since the
malevolent users are driving more than the honest ones. But our SpeCam trust engine
eliminates quite well these malevolent users, since less than 0.22% (219 / 99781)
speed cameras where not tagged.

Sce?alrolggiggwoo M ooy [ooy [nom [ooy
cam; 1-10; A%
Test 0 | 20550 | 79450 0
usr;1-100;1-11;24;100;100 -
Basic 0 | 36110 | 63890 0
spm;101-105;1-11;1
SC 0 240 | 99760 0

scn;100;100;run(24);act(1,11,100,100)

Scenario 2 tests how the trust engine reacts against a spammers attack. This time the
cameras are aways turned off and the malevolent users vote "1" for each radar
position. Again we observe a significant improvement with our new trust engine.

Trust without Truth 13

Scenario 3 - tp-yy | fp-yn | tn-nn | fn-ny
cam; 1-10;48;360;720 Test 8736 346 | 90572 346
usr;1-100;1-11;24;100;100 Basic 8734 688 | 90245 333
scn;100;100;run(24);act(1,11,100,100) SC 8692 674 | 90304 330

In scenario 3 we have 10 radars that are turned on every 66 hours (48 + (360 + 720) /
60) for 6 hours, and 100 users that vote always correctly. We expected therefore
similar results than for the Basic trust engine, which seems to be the case.

Scenario 4 - tp-yy | fp-yn | tn-nn | fn-ny
cam;1-10;48;360;720 Test 8356 350 | 90510 784
usr;1-100;1-11;24,95;95 Basic 8751 750 | 90090 409
scn; 100;100;run(24);act(1,11,95,95) SC 8710 836 | 90056 398

In scenario 4 the users are voting incorrectly 5% of the time. This figure is clearly
overrated (according to the tests realized with FoxyTag where this number is less
than 1% in practice), but it let us to prove that our trust engine is tolerant with
unintentional incorrect votes made by honest users.

Sce.rzc";ilrolg8 53 o - IrsaIrsare
cam, 1-10,45;360, Test 3885 58 | 90901 | 5156
usr;1-100;1-11;24;100;100 Basi 5123 115 | 90873 3889
usr;101-105;1-11;1;0;100 —

SC 8726 820 | 90047 407

scn; 100;100;run(24);act(1,11,100,100)

In scenario 5 we added 5 deniers that try to remove al the tags they cross. The
honest users are behaving correctly 100% of the time. We have clearly more false
positives than for the Basic trust engine. Thisis normal since the deniers removed all
the tags, whether there is a camera or not. If we compare the results with the ones
from scenario 4, we see that our trust engine eliminates efficiently deniers, since the
number of false positives and false negatives are similar.

Scéqirol-gsieo-no - o | o
cam, 1-10,45,360, Test 3653 67 | 90927 | 5353
usr;1-100,1-11;,24:95,95 Bas 5051 | 129 | 90717 | 4103
usr;101-105;1-11;1;0;100 =

sc 8623 920 | 90020 437

scn; 100;100;run(24);act(1,11,95,95)

In scenario 6 the users vote incorrectly 5% of the time. Unfortunately, we observe
that the number of false negatives and false positives increase a little bit (compared
to scenario 5). It seems that 5% of incorrect votesis acritical limit for this scenario.

14 Michel Deriaz

&?2?0"28'7360'720 - tp-yy | fp-yn | th-nn | fn-ny
Cam; 220,558,555 Test 8656 | 18348 | 72768 | 228
usr;1-100;1-11,24:100,100 Basi 8910 | 32978 | 57937 175
$M:101-105;1-11;1 ¢

sc 8777 | 1501 | 89223 | 409

scn; 100;100;run(24);act(1,11,100,100)

In scenario 7 we replaced the deniers by a spammer team, who votes "1" at every
radar position. The other users are voting correctly 100% of the time. Even if the
number of false negatives is correct (compared to scenario 3), we observe a high
number of false positives. We first thought of a weakness in our trust engine, but
further investigations concluded that it is actually the simulator that presents a
weakness. The problem is that the positions of the radars are always the same (which
is not the case in reality), and that sometimes, by chance, a spammer really signal a
new speed camera, which generously increases its trust value. In reality this would
not be a problem, since signaling randomly a real speed camera at the right place is
amost impossible.

Sceqalrol 4088360 70 - tp-yy | fp-yn | th-nn | fn-ny
cam; 1-10;46; s
Test 8440 | 19048 | 71941 571
usr;1-100;1-11;24,95;95 -
Basic 8867 | 35156 | 55769 208
spm;101-105;1-11;1
SC 8652 1761 | 89176 411

<cn;100;100;run(24);act(1,11,95,95)

In scenario 8 the honest users are voting incorrectly 5% of the time. We face the
same weakness as in scenario 7. However, to scope with this problem, we tried to
remove from the system all the users where the mean trust value (average of the local
trust values of al the users) falls under -2. We got then similar figures than in
scenario 3, meaning that these "bad" values are mainly due to the simulator and not
to the trust engine.

7 Conclusion

We set up atrust engine that deals with what we call the "uncertainty of the truth" or
a situation where a trustor rates a trustee according to an observation that not
necessarily reflects the truth. Our trust engine is generic and can be adapted through
rules and parameters to any application using virtual tags. We chose the topic of
speed camera tagging since it is a complex problem in terms of uncertainty (speed
cameras can appear and disappear in avery unpredictable way) and since it was easy
to find volunteers to test our application.

The results presented in this paper where computed by our simulator, and some
of them where compared with data collected by FoxyTag (a widespread application
using our trust engine) in order to make sure that our simulator behaves in a way
close to reality. We observed that our trust engine excludes malevolent users but
"forgives" small mistakes (due to the "uncertainty of the truth") and infrequent
misuses (incorrect votes due a mix of the buttons) done by honest ones.

Trust without Truth 15

The main weakness we discovered in our work was directly related to the
simulator. Since the positions of the speed cameras where always the same,
spammers could by chance signal real radars and then have their trust value
generously increased. The second weakness was due to our trust engine and precisely
with scenario 6. We saw that in case of a heavy attack, the honest users had to do
less than 5% of incorrect ratings in order to keep the system reliable. In practice this
is not really a problem since we observed that real people using the application do
less than 1% of incorrect votes.

The next step in our study will be to use the deadline parameter of our tags. In
the speed camera case, we will be able to differentiate mobile radars from fixed ones.
We expect then an improvement in the presented figures, since we will be able to set
more precise rules.

References

[1] Website: http://www.google.com/gmm/

[2] M. Deriaz and J.-M. Seigneur, "Trust and Security in Spatial Messaging:
FoxyTag, the Speed Camera Case Study”, in Proceedings of the 3rd
International Conference on Privacy, Security and Trust, ACM, 2006.

[3] N. Dimmock, "Using trust and risk for access control in Global Computing",
PhD thesis, University of Cambridge, 2005.

[4] Website: http://secure.dsg.cs.tcd.ie/

[5] R. Guha, "Open Rating Systems", 1st Workshop on Friend of a Friend, Social
Networking and the Semantic Web, 2004.

[6] N. Mezzetti, "A Sociadly Inspired Reputation Model", in Proceedings of
EuroPK1, 2004.

[71 M. Deriaz, "What is Trust? My Own Point of View", ASG technical report,
2006.

[8] S.Buchegger and J.-Y. LeBoudec, "A Robust Reputation System for P2P and
Mobile Ad-hoc Networks', in Proceedings of the Second Workshop on the
Economics of Peer-to-Peer Systems, 2004.

[9] D. Quercia, S. Hailes, and L. Capra, "B-trust: Bayesian Trust Framework for
Pervasive Computing”, in Proceedings of the 4th International Conference on
Trust Management (iTrust), LNCS, Springer, 2006.

[10] J. Burrell and G.K. Gay, "E-graffiti: evaluating real-world use of a context-
aware system”, in Interacting with Computers, 14 (4) p. 301-312.

[11] P. Persson, F. Espinoza, P. Fagerberg, A. Sandin, and R. Coster, "GeoNotes:
A Location-based Information System for Public Spaces’, in H66k, Benyon,
and Munro (eds.), Readings in Social Navigation of Information Space,
Springer (2000).

[12] Website: http://www.foxytag.com

[13] M. Deriaz and J.-M. Seigneur, "FoxyTag", ASG technical report, 2006.

