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Abstract—Gestures are a fast and efficient mean to transmit
information. They are used in a large number of situations
where speaking is not as effective or even not possible, such
as to indicate precisely a point of interest or to warn about a
danger in a noisy environment. Furthermore, gestures can also be
used for intuitive human-computer interfaces where specific tasks
would otherwise require navigating through graphical interface
menus. Consequently, solutions to provide reliable and accurate
gesture recognition have been investigated extensively in the past
years. In this paper, we propose a gesture recognition system
to detect user interest with a sensor-embedded mobile phone.
Specifically, this system uses hidden Markov models to recognize
pointing gestures. Once such a gesture has been recognized, it
is straightforward to identify the point of interest based on the
user location and the phone orientation. In a subject-independent
scenario, we obtained a recognition accuracy above 91% with
the accelerometer when discriminating between pointing gestures
and similar gestures that are common with a mobile phone (e.g.
looking at the screen). When using the gyroscope in addition to
the accelerometer, the accuracy raised above 98%.

Keywords—Gesture recognition, mobile phone, accelerometer,
gyroscope, vector quantization, hidden Markov model.

I. INTRODUCTION

The importance of efficient human-computer interactions is
increasing rapidly in the framework of interactive and intelli-
gent computing, and several approaches have been considered
for this purpose. Gesture recognition, the process by which
the gestures made by the user are recognized by the receiver,
is one of these approaches [1]. A large number of recognition
systems have been proposed recently, most of them either
based on computer vision techniques or motion sensors. In
particular, motion sensors have gained increased popularity
lately due to their widespread availability, low price and ease
of use. For instance, almost all recent mobile devices, such as
smartphones and tablet computers, integrate a range of sensors
[2], the most common ones being accelerometers, gyroscopes
and magnetometers. Consequently, gestures have the potential
to become an intuitive, fast and efficient input method for
specific tasks [3], [4].

In particular, gestures can be used to detect user interest.
For instance, in a city guide application, the user can perform
a pointing gesture with his mobile device in order to obtain
information concerning a building or a monument. Indeed,
once the pointing gesture is detected, the point of interest can
be identified based on the user position (obtained from GPS or
another system) and the device orientation (obtained from an

electronic embedded compass). Detecting user interest is one
of the objectives of the MoveYourStory project. Specifically,
it is aimed at integrating gesture recognition for interest
detection in the Walking the Edit (WtE) application (http:
//walking-the-edit.net/en/) for mobile phones. This application
generates personalized movies based on the user’s location,
displacement and behavior. An editing algorithm dynamically
selects geolocalized audiovisual excerpts from a database of
annotated media files in order to construct a narrative. Location
and displacement information is obtained from GPS data, and
the behavior is estimated by recognizing the activity of the
user [5]. For instance, if the user is traveling fast by bike, the
generated story will contain many short videos, whereas they
will be longer if he is taking a stroll. Potential applications of
this movie generation framework include (but are not limited
to) cultural, patrimonial and touristic uses.

The rest of this paper is organized as follows. In Section II,
an overview of related work on gesture recognition is pre-
sented. Then, the proposed recognition system is described in
full detail in Section III. Experimental results are reported and
discussed in Section IV. Finally, a brief conclusion is given in
Section V.

II. RELATED WORK

Gesture recognition has been studied extensively over the
past two decades as a promising approach for human-computer
interactions [1], and it has been used in a wide range of
applications. Typical examples are detection of activities of
daily living [6], [7], user identification and authentication [8],
sign language recognition [9], [10], user interfaces [3], [4],
[11], [12], and human-robot interfaces [13]. As mentioned in
Section I, the two most widely-used approaches for gesture
recognition are based either on computer vision techniques or
on motion sensors. However, vision-based techniques are not
ideal in a truly mobile context due to limited wearability, high
computation requirements, and sensitivity to lighting condi-
tions and camera facing angle [6], [14]. By contrast, motion
sensors have low cost and are widely available. Several devices
with such sensors (mostly accelerometers and gyroscopes)
have been used for gesture recognition. Typical examples
include Wii controllers [8], [12], [14], [15], mobile phones
[3], [4], wrist watches [16], [17], and custom sensor-embedded
devices [11]. As our system is based on motion sensors, we
focused on this type of solutions.



In most of the proposed solutions, the gesture recognition
process can be separated in several stages: data acquisition,
feature extraction and recognition. The first step is straight-
forward: gestures are recorded from a set of motion sensors.
Then, features characterizing the gestures are extracted. The
choice of features varies widely across different systems. How-
ever, some approaches are common to several solutions, such
as windowing sensor data over sliding overlapping windows
to reduce the effect of noise [3], [8], [14] or scaling the data
to take into account intra- and inter-subject variability [11].
Another approach is to discard data samples with no motion
or that are too similar to the previous ones in order to reduce
the computational load [12]. Furthermore, in the cases where
the next stage requires discrete data, vector quantization is
applied to generate codewords [11], [12]. Once the features
are extracted, recognition is performed. This stage is often
based on dynamic time warping (DTW) [3], [8] or hidden
Markov models (HMMs) [11], [12], [16]. DTW requires only
limited computational power compared to HMMs. However,
it does not perform well in subject-independent scenarios
since, unlike statistical approaches, it lacks resilience to inter-
subject variability. Indeed, in cases where the system should
be reliable with different subjects, statistical models such
as HMMs are more appropriate. Other techniques were also
applied successfully to this problem: support vector machines
[14] and conditional random fields [18] to name a few. Col-
lectively, these studies suggest that many different approaches
can be used for gesture recognition. However, they all have
specific advantages and drawbacks, and thus the ultimate
choice depends on the intended application. Therefore, as our
system is designed to achieve high recognition accuracy in
subject-independent scenarios, we chose an approach based
on HMMs because of their ability to model inter-subject
variability.

III. SYSTEM DESCRIPTION

The gesture recognition system we propose is composed
of several parts: data acquisition, data windowing, feature
extraction, vector quantization, and model matching. The
complete structure of the system is shown in Fig. 1 where
dashed lines indicate operations performed during training
only. All parts are described in full detail in the following
sections. This system was implemented using both MATLAB
and the Android platform.

A. Data Acquisition

Signals are acquired from the 3-axis accelerometer and 3-
axis gyroscope sensors of a Samsung Galaxy S4 mobile phone
running the Android operating system. The gravity component
is included in accelerometer data. The sampling period is set
to 20 ms. It is important to note that the Android platform
is not real-time and this period is only a suggested value.
Consequently, some sampling jitter is present in sensor data.
Fig. 2 shows typical histograms of jitter for both accelerometer
and gyroscope.
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Fig. 1. Structure of the system for gesture recognition. Dashed lines denote
training-only operations.
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Fig. 2. Histograms of sampling jitter for the accelerometer and gyroscope
sensors. In some cases, delays longer than 60 ms were observed (not shown).

B. Data Windowing

In order to compensate for the irregular sampling, the
signals recorded from the sensors are windowed into sliding
windows. This results in sliding windows with a constant delay
between them. It is important to mention that the number of
data samples in each window is not constant due to sampling
jitter. In the uncommon case where a window does not contain
any data samples, it is simply discarded.

C. Feature Extraction and Scaling

A feature vector is then extracted from each sliding window.
In the training phase, the means and standard deviations of
the components of all feature vectors in the training set are
estimated. These values are then used to center and scale the
feature vectors. We investigated two simple sets of features. In
the first one, the mean of accelerometer values are computed
along each axis, resulting in 3-dimensional feature vectors.
In the second one, the gyroscope is used in addition to the
accelerometer, yielding 6-dimensional feature vectors.



D. Vector Quantization

In the next stage, the feature vectors are quantized by
searching in a set of prototype vectors, known as the code-
words, for the closest one in terms of Euclidean distance (L2

norm). In other words, each feature vector is translated to
the index of the nearest codeword. The prototype vectors are
computed in the training phase by clustering all feature vectors
in the training set with the k-means++ algorithm [19], which
is basically Lloyd’s method [20] with an optimized random
initialization scheme. Since this algorithm only finds a local
minimum, it is run 10 times and the best clustering in terms
of distance from each feature vector to the closest prototype
vector is selected.

E. Model Matching and Classification

The quantized feature vectors, also known as the sequence
of observations, are then fed to HMMs with discrete emission
probabilities to perform gesture recognition. One HMM is used
to represent each gesture that needs to be recognized. Left-
right models with a jump limit of one (at most one state can
be skipped) were selected since most gestures evolve smoothly
from a start point to an end point. It is of course possible to
use an ergodic structure (or a less common one) if needed.
Recognition is performed with the scaled forward procedure
[21]. This yields the probability of the current sequence of
observations given each model. The current gesture is then
classified as the one corresponding to the model with the
largest probability.

The model parameters for each gesture, namely the matrix
of transition probabilities, the matrix of emission probabilities
and the initial probabilities, are trained with the Baum-Welch
algorithm [21], modified in order to take into account multiple
training sequences. It is worth mentioning that the initial
probabilities are never updated due to the left-right structure.
Indeed, they are always equal to one for the first state and
to zero for the others. The training algorithm is stopped after
2000 iterations or when the relative change in log-likelihood
falls under 10−3. Furthermore, any entry of the matrix of
emission probabilities less than 10−9 is set to 10−9 in order
to avoid zero probability during recognition. Naturally, if any
modification is made, the matrix is re-normalized to ensure
that each row sums to one. As the Baum-Welch algorithm
only leads to a local maximum of the likelihood of training
sequences, it is applied five times with random initial param-
eters, and the set of parameters yielding the largest likelihood
for training data is selected.

IV. EXPERIMENTAL RESULTS

The performance of the gesture recognition system was
evaluated on a database of gestures for different sets of pa-
rameters for both subject-dependent and subject-independent
scenarios in terms of accuracy (percentage of gestures classi-
fied correctly). All details regarding this evaluation are given
in the following sections.

TABLE I
LIST OF GESTURES

Name Description

lcall answering a phone call with the left hand
lpointf pointing forward with the left hand
lpointl pointing left with the left hand
lpointr pointing right with the left hand
lscreen looking at the screen with the left hand
ltime checking the time with the left hand
rcall answering a phone call with the right hand
rpointf pointing forward with the right hand
rpointl pointing left with the right hand
rpointr pointing right with the right hand
rscreen looking at the screen with the right hand
rtime checking the time with the right hand

A. Gesture Data

Sensor data were collected from six healthy subjects (two
females, one left-handed) with a custom Android application
for gesture acquisition. This application was running on a
Samsung Galaxy S4 smartphone and logged data from the
embedded 3-axis accelerometer and 3-axis gyroscope to text
files. The sampling period was set to 20 ms, but it was only
a suggested value as discussed in Section III-A. The subjects
were instructed to press a button on the touchscreen at the
beginning of the gesture and release it at the end in order to
obtain segmented gesture data.

As the main reason for integrating gesture recognition in
the WtE application is to detect user interest, we focused on
pointing gestures and common gestures that can be similar,
such as checking the time or looking at the screen. The
complete list of the 12 considered gestures is given in Table I.
Several pointing gestures were considered to take into account
some of the large variability of such gestures. Furthermore,
looking at the screen and checking the time gestures are very
similar, but the latter ones have smaller amplitudes and slightly
shorter durations. As the subjects were asked to perform
the gestures as naturally as possible, there were only few
differences between some of them. The starting position for all
gestures was holding the phone in the hand with the arm along
the body. Gesture data were recorded over five days. Each day,
each gesture was recorded 10 times for each subject. This
resulted in a database of 600 gesture recordings per subject,
or 3600 recordings in total. This protocol was used in order to
investigate how the recognition system can cope with day-to-
day variations. Two examples of accelerometer and gyroscope
signals for lpointf and rpointf gestures are shown in
Figure 3. Once all gestures were recorded, they were imported
in MATLAB for further processing.

B. Parameters

The effects of several parameters on recognition perfor-
mance were investigated. First, we tested whether gyroscope
data can improve the correct recognition rate. For this purpose,
the accuracy of the system was measured when using only
accelerometer data and when using both accelerometer and
gyroscope data. Second, the influence of the window length
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Fig. 3. Examples of accelerometer (top) and gyroscope (bottom) signals for
lpointf (solid lines) and rpointf (dotted lines) gestures. The signals for
the x-axis, the y-axis and the z-axis are plotted in blue, green and red.

and the shift between consecutive windows was investigated
by varying the former from 40 ms to 100 ms in 20 ms steps
and the latter from 20 ms to 50 ms in 10 ms steps (50%
overlap in all cases). For vector quantization, four different
numbers of codewords were tested: 40, 60, 80 and 100. Finally,
the number of states in the HMMs was varied between 3, 4
and 5. The number of states was the same for all models,
as all gestures have approximately equivalent duration and
complexity. All the other parameters were set to the values
described in Section III.

C. Performance Measure

The performance of the proposed system was evaluated
in terms of recognition accuracy, the percentage of gestures
classified correctly. In particular, the accuracy was measured
for two different cases. In the first one, the goal was to
recognize every gesture separately (all vs all gestures), while
in the second one, it was to discriminate between pointing
(lpointf, lpointl, lpointr, rpointf, rpointl and
rpointr) and other gestures (lcall, lscreen, ltime,
rcall, rscreen and rtime) (pointing vs other gestures).
The second case was considered since one of the main
objectives of this project was to detect when a user is pointing
with his mobile phone.

Two different strategies were used for cross-validation. In
the subject-dependent case, the signals were partitioned into
five datasets, one for each day. The gesture recognition system
was trained with signals from four datasets and tested on
signals from the remaining one. This was repeated so that
each dataset was used once for testing. The accuracy estimated
from each test set were averaged for each subject and a global
measure of accuracy was computed by averaging the accuracy
values of all subjects.

In the subject-independent case, a leave-one-subject-out
strategy was used. Namely, each test set was built by grouping
together all recording from one subject. Therefore, recognition
accuracy was evaluated by training the gesture recognition

system with data from five subjects and testing it with the
remaining dataset. As before, this was repeated so that each
dataset was used once for testing. The global accuracy was
obtained by averaging the accuracy measurements for all
subjects.

D. Results

Recognition accuracy for all parameter configurations mea-
sured in subject-dependent tests and subject-independent tests
are reported in Fig. 4 and Fig. 5 respectively. Furthermore, the
five best configurations in terms of accuracy are summarized
in Tables II and III for all cases.

In the subject-dependent scenario, accuracy values around
96% were obtained when recognizing gestures separately.
Thus, even with similar gestures, the recognition system
showed reliable performance, Furthermore, when discrimi-
nating only pointing gestures from the others, the accuracy
raised above 99%, almost perfect recognition. In fact, for some
subjects, perfect recognition (100% accuracy) was achieved.
The effects of window length, number of codewords and
number of states were limited on recognition accuracy, even
though more codewords often led to slightly better perfor-
mance. By contrast, the main factor is clearly the inclusion
of gyroscope data. Indeed, using the gyroscope in addition to
the accelerometer increased the recognition accuracy by more
than 5% in the all vs all gestures case, and by more than 1.5%
in the pointing vs other gestures case.

In the subject-independent scenario, the overall performance
decreased drastically when recognizing all gestures separately.
In particular, when using accelerometer data only, accuracy
dropped below 70%. Using the additional information pro-
vided by the gyroscope increased the accuracy up to 82%,
which is much better but still insufficient to be practical. These
results are not surprising as some of the gestures (Table I) are
very similar. However, when discriminating pointing and other
gestures, the recognition performance improved substantially.
Indeed, with the best parameter configurations, accuracy raised
above 91% for accelerometer data only. Moreover, when using
both the accelerometer and the gyroscope, the accuracy raised
above 97%, even reaching 98% for one specific configuration.
The same remarks about the influence of the different param-
eters as for the subject-dependent scenario can be repeated in
this case. Indeed, there were no clear difference for different
window lengths, numbers of codewords or states. As before,
the only real difference was using gyroscope data or not.

Taken together, these results suggest that, with such a
system and for specific tasks, gesture recognition can be
considered as a reliable and practical input method for inter-
acting with a mobile phone. Furthermore, it is also important
to mention that no noticeable delay was observed during
recognition when this system was running on a Samsung
Galaxy S4 smartphone. However, training is computationally
intensive and should not be performed on a mobile device,
especially in subject-independent scenarios where the amount
of training data can be very large.
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(b) Pointing vs other gestures.

Fig. 4. Measured accuracy of subject-dependent tests for (a) all vs all gestures and (b) pointing vs other gestures recognition. Recognition accuracy is reported
in each chart for the tested window lengths. Each column corresponds to a number of states, while each row corresponds to a number of codewords. Accuracy
in green was measured with accelerometer data only, whereas the one in yellow was measured with both accelerometer and gyroscope data.
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Fig. 5. Measured accuracy of subject-independent tests for (a) all vs all gestures and (b) pointing vs other gestures recognition. The same remarks as for
Fig. 4 apply.

V. CONCLUSION

Gesture recognition is a promising approach to detect user
interest as it does not require visual attention from the user
compared to traditional techniques. This is especially true
for mobile devices which usually are not the focus of user
attention and whose screens can be quite small. Furthermore,
it is often faster and more efficient to perform a gesture than
to navigate through interface menus. Experimental tests have
shown that our system achieves high recognition accuracy
in both subject-dependent and subject-independent scenarios
when detecting pointing gestures. Subject-independent perfor-
mance was not as satisfactory when recognizing all gestures
separately. However, this is not surprising as some of the
considered gestures are very similar and thus difficult to
discriminate. The test results also revealed the importance
of using a gyroscope, if available, to improve the overall
performance. Indeed, this sensor was a key point to obtain
high detection accuracy. By contrast, the other parameters
(window length, number of codewords and states) were not as

decisive. Indeed, different values only caused slight differences
in recognition performance.

In the future, we will explore how to extend the proposed
system to address gesture recognition in a continuous stream
of sensor data, also known as gesture spotting. Indeed, the fact
that the user needs to indicate when a gesture starts and ends
can have a negative impact on usability. The main challenges
will be to achieve high recognition performance while keeping
false detections at minimum and to maintain a reasonable
computational load for the limited processing capabilities of
mobile devices [16]. In addition, it would be interesting for the
system to adapt to a particular user for improved performance
or even to learn new gestures online while limiting as much
as possible the number of needed training samples.
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TABLE II
BEST RESULTS OF SUBJECT-DEPENDENT TESTS

Accuracy [%] Window length [ms] Codewords States

90.53 40 60 3
90.28 40 80 3
90.25 40 100 3
90.17 60 80 3
90.06 40 80 4

(a) All vs all gestures, accelerometer.

Accuracy [%] Window length [ms] Codewords States

96.06 40 100 4
95.97 60 100 5
95.89 60 100 3
95.86 40 80 4
95.86 40 100 5

(b) All vs all gestures, accelerometer and gyroscope.

Accuracy [%] Window length [ms] Codewords States

97.47 40 100 4
97.47 80 60 4
97.36 40 60 5
97.28 40 100 5
97.28 40 100 3

(c) Pointing vs other gestures, accelerometer.

Accuracy [%] Window length [ms] Codewords States

99.19 100 80 5
99.14 100 100 3
99.14 40 100 5
99.11 40 60 5
99.08 40 100 3

(d) Pointing vs other gestures, accelerometer and gyroscope.
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