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Abstract—In which way may an application switch instantly
and reliably between an indoor and an outdoor positioning
provider as a user enters and exits buildings? In this work
we present a robust switching algorithm, utilizing the dynamic
accuracy estimation of each position provider as a reliability
indication. Our algorithm offers a fast automatic switch between
the indoor and the outdoor provider, in a transparent way for the
user. We also present experimental results, using GPS outdoors
and a Bluetooth provider indoors. This technique was tested in
our lab and was afterwards installed at the Hospital of Perugia,
Italy, in the context of the Ambient Assisted Living (AAL)
Virgilius project, where users can navigate with a smartphone.
This study is also a result of the research done in the context of the
AAL EDLAH project, for optimizing the selection of the most
adequate positioning technology. Accurate position estimations
are used as input for the EDLAH object detection module.

Keywords—Indoor and Outdoor Detection, Indoor Positioning,
Mobile Phones, GPS Availability, Bluetooth.

I. INTRODUCTION

Indoor positioning is a topic that has gained great attention
over the last years. Numerous mobile applications are utilising
the location of the user. Outdoors positioning has been ahead,
with GPS (Global Positioning System) being the dominant
technology of the field. On the other hand, no universal
standard has dominated the field of indoor positioning, where
a big variety of alternatives has been proposed.

A technology which has been widely used during the last
years is the Bluetooth Low Energy (BLE) technology. It has a
low energy consumption, while maintaining a communication
range similar to that of its predecessor, Classic Bluetooth.
Several manufacturers produce Bluetooth beacons, that can
be used for location applications, among their other utilities.
Bluetooth beacons function with batteries and are small in size,
thus they offer flexibility in the way they can be deployed in
a building. Each beacon broadcasts a self-contained packet
of data periodically. The packets contain an identifier of
each beacon, so that the receiver can distinguish them. The
Received Signal Strength Indicator (RSSI) can be used to
estimate the distance between the mobile device and the
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transmitting beacon [1][2][3]. Due to their low cost and low
consumption, a dense network can be deployed. Having a
dense deployment can lead to reliable distance estimations
from, at least, the closest beacons.

An important challenge for applications that need to offer
positioning globally, both indoors and outdoors, is to have
an efficient mechanism of switching between positioning
providers. An example scenario can be the task to navigate
a user to a hospital with GPS, and automatically switch to
BLE when the user enters the building, in order to guide
him to the specific room he wishes to go to , as in the
Virgilius project. Another scenario may be to navigate users
in University campuses or conference centres, where both
indoor and outdoor positioning is required. In these scenarios,
the outcome of the positioning module may be used to feed
a navigation module, whose results rely on the accuracy
and the responsiveness of the position estimations, regardless
of the changes of environment (indoors/outdoors). Moreover,
localizing a user accurately can assist other modules, such as
the object localization module [4] created in the context of the
of EDLAH project. The goal of this module is to assist older
persons to locate an object that they might have lost, such
as keys or glasses, at their house. A BLE beacon is attached
to these objects, from which the distance to the user can be
inferred, as described in [4]. As users move inside their house
or in their yard, their estimated positions and the estimated
distance from the beacons are used to infer the location of the
lost object.

Lately, several studies [5][6][7][8][9][10] have focused on
the Indoor/Outdoor (IO) detection problem. This problem
is studied not only specifically for selecting the most appropri-
ate provider for positioning, but to serve in a broader domain
of context-aware applications. One of the existing techniques
for IO detection is to use GPS and its drop in confidence or
inability to obtain a fix in order to conclude that the user is
indoors, as in [5][6].

The use of GPS quality has also been used for a positioning
provider switching study [7]. In their work, Saengwongwanich
et al. [7], present an indoor/outdoor switching methodology
which utilizes the fact that receptions of at least four GPS
satellites are needed in order to calculate the user’s position
in three dimensions. The algorithm uses the GPS position
estimations when 4 or more satellites are visible, whereas the
indoor provider (WiFi in their work) is trusted otherwise.



Another method is to use the light sensor of the mobile
device (as in [8][9]) alongside to other signals such as the
cell signal and magnetic intensity, and utilize the difference in
luminosity of indoor and outdoor environments, for IO detec-
tion. Lastly, IO detection utilizing embedded digital cameras
in mobile phones and image processing techniques has been
also proposed [10].

The rest of this paper is organized as follows. In Section II,
we shortly present the indoor positioning method that was
used for the experimental part of this work. In Section III, we
present the idea of the proposed switching algorithm. Mea-
surements and experimental results are reported and discussed
in Section IV. Finally, conclusions drawn along with future
directions are presented in Section V.

II. INDOOR POSITIONING METHOD

The switching logic that is presented in a following chapter
is generic, and provider independent. Nevertheless, for the
testing implementation and the measurements of this study,
the BLE technology is used as an indoor provider, and more
specifically, the algorithm presented in [11] is utilized. Also,
GPS technology is used as the outdoor provider. Following,
we briefly present the indoor provider that is used.

For the indoor BLE provider, Bluetooth beacons are used.
Each beacon periodically transmits a packet containing its
identity. The mobile device that is to be localized receives
these packets from the beacons in range. From the RSSI
received from each beacon a distance estimation can be
inferred.

Having obtained an estimation about the distance of the
mobile device from each beacon, we proceed to the position
estimation. From the list of beacons that are detected, only a
set of the closest beacons are used for the calculation. In [11],
it is shown that keeping the four closest beacons minimizes
the estimation error.

Assuming that the mobile device is inside the coverage area
(inside the outer polygon defined by the beacons’ placement),
the estimated position will also be inside the quadrilateral
defined by the four closest beacons. Let [e1, e2, e3, e4] be
the estimated distances from the 4 closest beacons, while
[lat1, lat2, lat3, lat4] and [lon1, lon2, lon3, lon4], the corre-
sponding latitude and longitude of their positions. The latitude
Latest and longitude Lonest of the estimated position are
calculated as follows:

Latest =

4∑
i=1
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ei

4∑
i=1

1
ei
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4∑
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1
ei

(1)

The inverse value of the distance estimation from each
beacon is used as a weight, in order to perform a weighted
average of the positions of the closest beacons, that will give
the estimated position. In order to have a more reliable distance
estimation, we average the latest estimated distances from each
beacon. In this way, we partially cope with the instability of
the RSSI.

The position prediction is limited to the area that is defined
by the polygon that the beacons’ positions define. Thus, it
is indispensable for this positioning algorithm that beacons
are placed in such a way so that they surround all the area
that is desired to be covered. For the deployment of this
study, and in order to record the experimental results that
are later presented, common areas of the building of Centre
Universitaire d’Informatique of the University of Geneva were
used. A zigzag pattern was used for placing the beacons
in corridors and big halls. The same logic was used at the
deployment of the Hospital in Perugia.

III. SWITCHING METHODOLOGY

The algorithm proposed in this study is intended to be used
with any indoor or outdoor provider. The experimental imple-
mentation for this study uses GPS as an outdoor provider, and
Bluetooth as the indoor one, since these were the technologies
selected for the final deployment, at the Hospital of Perugia. It
is noteworthy that the same logic may support a multi-provider
approach. Thus, the logic may support cases where several
indoor areas use different indoor technologies (BLE, WiFi,
etc.), or if it is desired not to restrict the outdoor provider to
GPS, but also use others, such as the Cell-ID. Nevertheless,
in our implementation a single provider was used for each
environment (indoors and outdoors).

The crucial parameter of the switching algorithm is the
dynamic accuracy estimation that each provider should give.
This claimed accuracy of each provider is utilised in order
to compare the providers’ reliability. The position estimations
from the GPS provider contain an estimation of the accuracy,
that can be used as the level of confidence of this estimation.
On the other hand, in the following subsection the dynamic
accuracy estimation concerning the indoor provider used is
discussed, before proceeding to the detailed presentation of
the algorithmic logic of switching.

A. Dynamic accuracy estimation

The field of calculating a dynamic accuracy estimation
for indoor positioning techniques is very challenging. There
have been studies [12][13] that use an observed correlation
between the positioning error and the number of visible access
points, in order to provide dynamically an estimation about
the certainty of the estimated position. Nevertheless, these
approaches do not refer to a dense indoor deployment, such as
the indoor provider used at the experimental part of this study,
but refer to public WiFi access points that can provide a rough
position estimation (indoors or outdoors) with a precision of
a few tens of meters. Thus, to have a more representative
dynamic accuracy estimation, an empirical method is used,
that is presented below. It should be pointed out, that this
method is an open subject of research, with a view to be further
optimized.

An empirical way was used for estimating the certainty over
a position estimation, for the Bluetooth positioning method
proposed in [11]. As described in [11], the beacons are
deployed in a zigzag pattern. We chose the distance estimation



Fig. 1. Position of the user (in blue) inside the beacon area (in green), and
accuracy circle (in purple), as infered from the estimated distance from the 3
closest beacons (in red)

Fig. 2. Position of the user (in blue) outside the beacon area (in green), and
accuracy circle (in purple), as infered from the estimated distance from the 3
closest beacons (in red)

from the third closest beacon to be the value of the claimed
accuracy of the estimated position. A user that moves inside
the area that the beacons define will be inside the triangle
that the three closest beacons define. A circle having as center
the estimated position and as radius the distance to the third
beacon will include the triangle of the three closest beacons,
as in Figure 1. When the user goes outside the area that the
beacons define, as in Figure 2, the distance estimation from
the third beacon will give a rough approximation of how far
the user is from the beacon area. Even when the user exits
the building, thus the beacons’ area, the position estimations
remain inside this area, since the way the positions are esti-
mated is by averaging the positions of beacons. Nevertheless,
the estimations of the distance from each beacon will get high
values, and thus, the claimed accuracy (distance from the third
closest beacon) will indicate the poor quality of the estimation,

as the user moves away from the beacon area.

B. Behaviour of indoor and outdoor providers

The accuracy estimation of the indoor provider is also
needed in order to have a measure of comparison with the
GPS accuracy estimation. The accuracy of GPS takes small
values (meaning that the accuracy is good) in open spaces
outdoors, while it has really big values inside buildings. Using
the distance estimation from a beacon (the third closest in
our case), we get the inverse behaviour, that is having small
values when the user moves indoors among the beacons and
big values as he leaves the building. These measures form
indications about being indoors or outdoors. The crucial step
is the creation of a robust algorithm that switches quickly and
reliably from one provider to the other.

It is worth mentioning at this point, some challenges of
the task of switching. Initially, it is worth investigating the
behaviour of the position estimations and of the dynamic
accuracy estimation at the border regions of indoors/outdoors
areas. In order to be able to exemplify, we mention in this
example BLE as the indoor provider and GPS as the outdoor
one.

When a user moves outdoors, towards the entrance of a
building, the GPS accuracy may start degrading and the user
may start receiving Bluetooth signal receptions. In cases like
this, if the application receives position estimations from both
providers, and returns to the user the one with the best
claimed accuracy, the result may be a totally inconsistent
series of positions. This happens because the most reliable
provider can change continuously between Bluetooth and GPS,
in these border regions. A continuous switching, back and
forth, between providers can significantly deteriorate the user
experience, and all functionalities that might be related with
the location estimation. For example, a recalculation of the
trip in a navigation module may be triggered continuously,
if the provider selection is unstable. On the other hand it is
desirable that the switch occurs quickly, but still reliably. With
this view, we now present the switching algorithm.

C. Switching algorithm

In this subsection, the switching algorithmic logic is pre-
sented, with the assistance of the flow chart of Figure 3. We
assume that position estimations from both indoor and outdoor
providers are available to the application. The application uses
the flag currentProvider, which stores the provider that is
trusted at each moment. Without loss of generality, we present
a generic solution for two providers. Let IN and OUT be
these two providers, which implies that the currentProvider
may receive these two values. Moreover, the application stores
the accuracies of the last position received from each provider,
namely lastIN and lastOUT (an implied action in Figure 3).
At each new position estimation received from the current
provider, the position is returned to the application. When the
received position estimation is not from the current provider,
the last accuracies of each provider (lastIN and lastOUT )
are compared. If the current provider’s accuracy is worse than
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Fig. 3. Flow chart of switching algorithm

the accuracy of the other provider, then a counter is incre-
mented by one, otherwise the counter is set to zero. When
the counter reaches a threshold value, the currentProvider
changes value, from IN to OUT or inversely. The counter
reaching a threshold signifies that several consecutive position
estimations of the currentProvider were less reliable than
those given by the other provider. Requesting a number of
good receptions greater than a threshold, guarantees that the
new provider is reliably better than the previous one. If there
are not several consecutive good readings but sporadically a
few, the currentProvider remains unchanged.

The specific values of the thresholds used should be ap-
propriately tuned, according to several factors. Firstly, the
frequency that position estimations are given from the indoor
provider is an important factor. Commenting our experimental
experience, we note that the indoor Bluetooth provider returns
one position approximately every one second. This frequency
is similar to the frequency with which positions are normally
obtained by GPS. Furthermore, the density of the deployment
and the range of the beacons influence the threshold selection.
Lastly, there is a trade-off in selecting the threshold values,
between the level of certainty with which a switch should be
triggered and how quickly a switch should occur.

Apart from the main algorithmic logic presented in the flow
chart (Figure 3), more details should be carefully examined.
The algorithm should not get stuck to a provider at any
point. For example, consider a scenario IN = BLE and
OUT = GPS, in which a user exits a building having
BLE as currentProvider. Assume that the accuracy of GPS
position estimations that she receives outdoors is consistently
bad (due to environmental conditions). In this case, if the last
Bluetooth position estimation received has a better claimed
accuracy than what GPS can achieve under these circum-
stances, currentProvider will be stuck to BLE, and no
position estimation will be returned to the application ever
since. To avoid this, we propose an additional mechanism
that checks the number of consecutive position estimations
that are not provided by the current provider, and changes the
currentProvider when these consecutive receptions exceed
a threshold.

As mentioned before, in cases where the two providers
have distinct frequencies of providing position estimations,
the threshold values of the described algorithm as well as the
threshold of consecutive position estimations from a provider
of the above mentioned additional mechanism, should be
carefully tuned.

IV. MEASUREMENTS

The switching algorithm was tested in the building of
the Centre Universitaire d’Informatique of the University of
Geneva. Initially, in Figure 4, we present an example of the
way the claimed accuracy of the two providers change as a
user moves, exiting from a building. As the user starts indoors,
she moves close to the beacons and thus, we observe that
the estimated accuracy of the Bluetooth provider gets low
values (good accuracy). As the user approaches the exit of the
building, she starts getting some GPS readings, that have poor
accuracy. At the border regions of indoor/outdoor areas, the
accuracy may fluctuate until the user distances herself from the
building. When the user passes to the outdoor area (after the
red dashed line), the GPS accuracy improves and, at the same
time, the accuracy of Bluetooth degrades. We observe that it
takes a few seconds to receive a number of reliable readings
from the new provider, before the currentProvider changes
(brown dashed line). This time depends on the threshold of
new reliable readings that has been set. This threshold tunes
the trade-off between delay of switching and robustness of
switching. The comparison of different settings of parameter
values is out of the scope of this work, as it depends on
many factors, such as the technologies used, the environment
and the preferences of the user over the trade-off previously
mentioned.

In Figure 5, we present the position estimations that an
application will receive, using the proposed algorithm. The
grey segments represent the true trajectory of the user. From
checkpoints 1 to 3, the user moves inside the building. From
checkpoints 3 to 5, the user is outside the building, but under
a rain shelter, highlighted in light purple. In accordance to
the related bibliography [8][9], we refer to this segment of



the path as semi-outdoor part. The fact that in semi-outdoor
environments the area above the user is covered significantly
degrades the position estimations given by GPS, and con-
stituently, its claimed accuracy. For this reason, when we make
a binary distinction (indoors/outdoors) in this work, we will
only include the truly open spaces as outdoor environments,
and not the covered areas (semi-outdoor). As a consequence,
we only consider the path from checkpoints 5 to 7 to be
outdoors.

Fig. 4. Claimed accuracies of Bluetooth (blue line) and GPS (green line),
during a movement from indoor to outdoor environment. The dashed lines
indicate the moment that the user went outdoors (red dashed line), and the
moment the provider switched (brown dashed line).

Fig. 5. Estimated positions using the switching algorithm, are shown in red
(indoors and outdoors). The true trajectory of the user appears in grey.

With the trajectories in red color, we see the estimated
positions that the user receives using the automatic switching.
Initially, when the user is indoors, the Bluetooth provider is
giving position estimations that suggest a trajectory towards
the exit of the building. When the user moves in the semi-
outdoor area that is not equipped with beacons, the estimated
positions remain inside the building. This happens because
the Bluetooth provider gives position estimations only inside
the area where beacons are deployed. When the user passes
checkpoint 5, GPS estimations start becoming much more
accurate. At the same time, as the user distances herself

from the beacons of the building, the claimed accuracy of
Bluetooth worsens. The moment that the automatic switching
occurs, indicating GPS as the currentProvider, the position
estimations of GPS are provided to the user, as seen by the
red trajectory at the outdoor part.

TABLE I
DELAY OF PROVIDER SWITCHING

Mean switch delay (s) σ of delay (s)
Outwards 6.72 2.1
Inwards (checkpoint 5) 9.04 0.95
Inwards (checkpoint 3) 3.43 1.05

The distance from checkpoint 1 to 7 (outwards) and from
7 to 1 (inwards) was covered 10 times, in order to report
an average behaviour. In Table I, the delay with which the
switching occurs is reported. For the outward trip we report the
mean difference in time between the moment the user passes
from checkpoint 5 and the moment that the currentProvider
changes, as well as the standard deviation. Similarly, we
provide the same statistics for the inward trip, measuring this
time the time difference not only regarding passing checkpoint
5 (entering the semi-outdoor area), but also passing checkpoint
3 (entering the building), since this is when the user enters
the beacons area. It should be mentioned that the algorithm’s
threshold of requested consecutive good readings was set to 5.
The correct switch occurs always, and has a very low delay.
Considering that 5 good readings are requested, and that the
Bluetooth provider has an update frequency of one second, we
see that the switching is very responsive.

Fig. 6. Claimed accuracies of GPS (green line) and BLE (blue when BLE
is the current provider, red otherwise), received at the limit of indoor/outdoor
areas.

To offer a better understanding of the behaviour of the
claimed accuracies and of the challenges of the proposed
switching algorithm, we conducted the following experiment
of a border case scenario. A user moved from checkpoint 1
to checkpoint 5 (referring to the checkpoints, as they appear
in Figure 5), and then stayed at checkpoint 5, that is the limit
of indoor/outdoor areas, for 10 minutes. The measurements
were done during the lunch break time, with crowds of people
passing by, influencing the receptions, as in a real life scenario.
In Figure 6, we can observe the fluctuation of the claimed
accuracies of the two providers through time. In green, we



see the GPS accuracy. The accuracy of Bluetooth appears
in blue when Bluetooth is the currentProvider, and with
red otherwise. It can be easily observed that the claimed
accuracies of the providers significantly fluctuate at the limit
of indoor/outdoor areas. During the time of this experiment,
the currentProvider changed 19 times. We see that instant
jumps from one provider to the other are avoided, and the
median time of staying at the same provider is 20 seconds.
On the other hand, if only the latest claimed accuracy were to
be used, the currentProvider would have changed 40 times,
and would often be switching back and forth between the two
providers, at consecutive seconds.

V. CONCLUSIONS AND FUTURE WORK

A simple and effective algorithm for automatic switching
between indoor and outdoor positioning providers was pre-
sented. The algorithm can be tuned according to the properties
of the technologies used and the requirements of the applica-
tion.

For battery saving reasons, geofencing could be used to
activate and deactivate providers. For example, when a user
is outdoors, the BLE could be inactive until the user enters
an area around the building that supports a BLE positioning
provider. Thus, it is only next to the building that both
providers will be active. In this way, the proposed responsive
automatic switch occurs when the user actually enters the
building, and also, battery life is increased as both providers
stay active only in areas where a switch may occur.

Moreover, we intent to investigate in detail the concept
of the dynamic accuracy estimation for indoors providers.
It is worth investigating for the optimal measure that can
dynamically give an estimation of certainty over a position
estimation. A potential measure can be evaluated a posteriori,
comparing it with the actual positioning error committed by
the provider.

The current study works as a solid base for the rest of the
research modules of the two European projects, EDLAH and
Virgilius. The robustness and responsiveness of the selection
of the most appropriate provider improves the quality of
position estimations that are fed to the object localisation
module of EDLAH. Furthermore, a fast automatic switching
between indoor and outdoor providers facilitates the goal of
Virgilius towards a continuous user-friendly navigation, in any
environment.
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