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Abstract—During the last decades, location based services
have become very popular and the developed indoor positioning
systems have achieved an impressive accuracy. The problem
though is that even if the only requirement is room-level
localization, those systems are most of the times not cost-efficient
and not easy to set-up, since they often require time-consuming
calibration procedures. This paper presents a low-cost, threshold-
based approach and introduces an algorithm that takes into
account both the Received Signal Strength Indication (RSSI) of
the Bluetooth Low Energy (BLE) beacons and the geometry of
the rooms the beacons are placed in. Performance evaluation was
done via measurements in an office environment composed of
three rooms and in a house environment composed of six rooms.
The experimental results show an improved accuracy in room
detection when using the proposed algorithm, compared to when
only considering the RSSI readings. This method was developed
to provide context awareness to the international research project
named SmartHeat. The projects aims to provide a system that
efficiently heats a house, room by room, based on the habitants’
habits and preferences.

Keywords—Indoor positioning, localization, Bluetooth low en-
ergy, RSSI, room-level accuracy

I. INTRODUCTION

In the past two decades, there has been a continuous rise
in interest in location-aware applications. After the invention
of the Global Positioning System (GPS), more and more
devices have included a GPS receiver and have been using
this technology. Especially with the rise of the smartphones,
Global Navigation Satellite System (GNSS) receivers have
become available in the market at low cost, and are nowadays
ubiquitous. While the GNSS is an exemplary solution for most
outdoor applications, it is not suitable for indoor environments.
Therefore, new technologies and systems have been invented
that can be used for indoor localization.

One common category of such systems is that of the inertial
ones, namely those that use an inertial measurement unit
tracking technique, such as the pedestrian dead reckoning
[1]. Sound based systems also exist, using for example ul-
trasound anchor beacons with known position [2]. There are
also systems that use other spatially dependent environmental
properties such as magnetic fields, visual object recognition
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and light. Last but not least, there are hybrid systems that
are implementing multiple technologies [3] or that are using
multinodal sensoring [4].

However, the most widespread indoor localization technique
is by using radio transmissions. Methods that use radio include
Wi-Fi devices that are popular and widely deployed, and
Bluetooth beacons that are of low cost [5]. Those systems
either estimate the distance between the transmitter and the
receiver by employing path-loss models or employ location
fingerprinting to infer a position. The measured radio signal
quantities typically include the link quality, the time of arrival
(TOA), the angle of arrival, the time difference of arrival, the
signal-to-noise ratio (SNR) and the RSSI. The RSSI is the
relative received signal strength in a wireless environment, in
arbitrary units. RSSI is an indication of the power level being
received by the antenna and therefore, the higher the RSSI
number, the stronger the signal.

Our approach to indoor localization is based on the use of
BLE beacons, using the RSSI value, since it is available in
all standard wireless communication devices. The important
feature of our approach that distinguishes it from other systems
based on Bluetooth is that it does not only rely on radio
signal quantities. It also takes into account the geometry of
the rooms the beacons are placed in, i.e. the height and the
surface area. Since the requirements of the localization system
to be developed were minimal cost and setup process for the
end user, we used the minimum amount of BLE beacons, that
is one BLE beacon per room attached to the ceiling in the
center of it, and we opted to develop a more sophisticated
algorithm for room detection.

In ubiquitous computing the need for location information
is critical and several context aware applications are in need
of an indoor positioning system for room localization. Our
motivation in developing this indoor localization system with
room-level accuracy is to provide contextual information to the
international research project named SmartHeat. The project
aims to provide a system that efficiently heats a house, room
by room, based on the habitants’ habits and preferences. It
will also be used to provide location information to the F2D
fall detection system [6], as a way to provide the system with
context awareness in order to improve its accuracy as well
as the reaction time of the user’s carers. The same solution,
though, can be easily deployed and used for any application



that requires room-level localization.
Ideally, in line of sight conditions the performance of such

a system can be accurate. On the other hand, the RF signals
indoors are prone to disturbances due to shadowing, fading, the
multipath propagation phenomenon and device imperfections.
These can lead to major errors when estimating distances
based on the radio signal quantities, since the signal can
significantly fluctuate. This can be confronted by not using
exclusively the newest reading of the signal quantity, but by
averaging a set of the latest ones [7].

The rest of this paper is organized as follows. In Section
II we present some of the related work on indoor localization
using Bluetooth and other technologies. Then, in Section III
we present the system we designed, while the experimental
evaluation of it in an office and in a house environment is
included in Section IV. Finally, our conclusions are drawn in
Section V.

II. RELATED WORK

Location information is essential for a wide range of ubiq-
uitous and pervasive applications. This is the reason why the
topic of determining the position of a device has been the
subject of many studies. In this section, we give an overview of
some existing systems and implementations that use Bluetooth
as well as other technologies as a means to achieve room-level
localization. All different implementations have had to balance
the technologies used in terms of cost, precision, accuracy,
portability, ease of installation, deployment and use.

One of the first indoor badge positioning systems is the
Active Badge system [8]. Active badges were used to emit a
globally unique infrared signal and were carried by people.
Sensors were placed in each located place such as a room,
in order to detect the signals sent by the active badges and
to infer a position for each badge. Although the sensors and
the badges were cheap, the sensors had to be connected to
a central server and the cables raised the cost of the system,
despite the room-level accuracy that it provided. The use of a
central server is also not suitable for our application.

Another way of indoor localization is by using ultrasound
signals. Inspired by bats that use those signals to navigate at
night, several such systems have been developed. The Active
Bat positioning system [9] is using tags that periodically
broadcast a short pulse of ultrasound. Ceiling mounted re-
ceivers at known positions receive the aforementioned pulses.
Using the TOA measuring method and trilateration, a 3D
position for every tag can be calculated. Generally, the perfor-
mance of the ultrasound technology is hindered by reflections
and by obstacles between receivers and transmitters. Although
the system has achieved an impressive accuracy in positioning,
the use of a large number of receivers by the Active Bat and
the interconnection between them, limit the scalability of the
system.

Conversely, the Cricket indoor localization system [2] uses
ultrasound emitters attached on the walls or ceilings at known
positions and receivers attached to objects to be located. The
system uses again TOA and the trilateration location technique

to infer a location. On top of this, radio frequency (RF) signals
are used for the synchronization of TOA and for proximity
positioning to address fault tolerance issues. Although the
system was not targeting room-level accuracy, less ultrasound
emitters can be used to achieve this, leading to a proportional
decrease in both cost and accuracy. The problem with this
approach though, is that both the transmitters and the receiver
need more power, since they have to handle both ultrasound
and RF signals at the same time.

A large body of indoor localization approaches use the Wi-
Fi technology, as to take advantage of the spread of wireless
access points in urban areas. The RADAR system [10] uses
the existing WLAN technology and employs RSSI and SNR
with the triangulation localization technique. Another system
named WILL [11] also uses the existing Wi-Fi infrastructure
and mobile phones to localize the user indoors. On this
occasion site survey is not needed and thus the deployment is
easy and rapid. Although Wi-Fi positioning is one of the most
popular indoor positioning techniques, most of the times the
Wi-Fi access points are not deployed with the ideal geometry
and density for positioning, and thus are not optimized for
indoor localization.

Another wireless sensor network based indoor location
estimation system uses the ZigBee communication standard
for room detection [12]. It considers the behaviour of the
RSSI through walls, floors and ceilings, and using a decision
algorithm estimates a position. A blind node is located by
using the reference nodes, that are placed one per room. The
system exhibits good performance for its simplicity, although
a wrong room indication often occurs when the blind node
is located in the vicinity of a wall, due to the unpredictable
indoor multipath effects and the potentially small path loss
through the intersecting material. The boundary locations were
also the biggest challenge that we faced in our approach.

The use of Bluetooth technology for positioning has been
evaluated more than a decade ago [13]. Since then, the
introduction of the BLE radio protocol provided even more
opportunities for indoor localization. BLE beacons are flexible
in the sense that they are small in size, they do not need to be
plugged in and are power efficient. Either deriving a location
from fingerprinting techniques [14], or ranging techniques
that use path-loss models [3], researchers have focused on
increasing the accuracy of the positioning. Although a room
estimation can often be derived from such systems, they are
usually not optimized for it. Our research has focused on
developing an easy to set up BLE-based system for room
localization, while keeping the cost as minimal as possible.

III. SYSTEM OVERVIEW

A. RSSI and propagation model

In RSSI-based localization, the signal sent from the anchor
beacon to the mobile device is used to map the RSSI to
a distance by means of a propagation model. The correct
calibration of the propagation model is crucial, since the way
RSSI is transformed into a distance significantly affects the



accuracy of the positioning. The widely known method we use
to model wireless signal propagation loss [15], is expressed as:

r = r0 − 10nlog10(
d

d0
) +Xσ (1)

where r and r0 denote the received signal power at the real
distance d and at a reference distance d0 respectively. Xσ is a
random variable representing the noise in the measured r and
n is the path loss exponent, that depends on the transmission
channel, the transmitter and the receiver. Using d0 = 1 meter
as the reference distance, and assuming Xσ to be a zero mean
Gaussian distribution, the simplified model is used as follows:

r = p− 10nlog10(d) (2)

where r is the received signal power at the distance d, p is the
received signal power of the receiver from a transmitter one
meter away and n is again the path loss exponent.

B. Room dimensions and RSSI thresholds

Let S be the surface area of a room and h be the height of it.
Assuming a square room as on Figure 1, the radii of the inner
and the outer tangent circles are calculated with Equations 3
and 4 respectively.

rin =

√
S

2
(3)

rout =

√
S

2
(4)

Now using the Pythagorean theorem, the hypotenuses are
calculated with Equations 5 and 6 respectively.

din =

√
h2 +

S

4
(5)

dout =

√
h2 +

S

2
(6)

Eventually, by substituting the calculated distances of the
hypotenuses into the propagation model of Equation 2, the
expected RSSI values at those distances are obtained. Defining
the inner and the outer RSSI thresholds as the expected
RSSI values at the inner and the outer tangent circles of the
aforementioned square room respectively, the thresholds are
calculated with Equations 7 and 8.

thresholdin = p− 10nlog10(

√
h2 +

S

4
) (7)

thresholdout = p− 10nlog10(

√
h2 +

S

2
) (8)
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Fig. 1. Dimensions in a square room.

C. RSSI classification and localization algorithm

In our approach, one BLE beacon is attached to the
ceiling in the center of every room. For every beacon, the
thresholdin and thresholdout are calculated as described
previously, taking into account the dimensions of the rooms.
Based on the RSSI readings of the beacons, they fall into one
of the following categories. The ”Strong” category (S) when
RSSI > thresholdin, the ”Medium” category (M) when
thresholdin > RSSI > thresholdout, the ”Weak” category
(W) when thresholdout > RSSI and the ”Not found”
category (NF) when there is no reading for a specific beacon.
The ordering of those categories based on their significance is
the following: S > M > W > NF.

At any given moment, for every beacon, a set of its N
latest RSSI readings is averaged, before every beacon can be
classified into one of the aforementioned categories. While a
relatively large N may increase the robustness of the system,
in the sense that it copes with noise and signal variations,
this particular choice may introduce lag to the localization
method, because older readings are taken into account for a
longer period of time. This can be confronted though by giving
more weight to the latest readings than to the old ones.

After the classification of the beacons, the most significant
non empty category is picked. If only one beacon falls
into this category, then the procedure ends and presence is
assumed in the room that this specific beacon was placed
in. When multiple beacons fall into this category, then a
score is calculated for every beacon that is equal to the
difference of its measured RSSI and its lower threshold. The



TABLE I
RESPECTIVE LOWER THRESHOLD FOR EACH CATEGORY.

Category Requirement Lower threshold
Strong RSSI > thresholdin thresholdin

Medium thresholdin > RSSI > thresholdout thresholdout
Weak thresholdout > RSSI -127

Not found no RSSI reading N/A

Fig. 2. Steps of the localization method.

lower threshold is equal to thresholdin when S is the most
significant non empty category, thresholdout when M is the
most significant non empty category and when W is most
significant non empty category, it is the global minimum of
the RSSI readings set by the BLE specifications, which is -127
[16]. The corresponding lower threshold for every category,
along with the requirements for the beacons to fall into each
one of them, are given in Table I.

Then, a probability is calculated for every beacon as the
fraction of its score by the sum of all the scores of the
beacons that fall into the aforementioned most significant non
empty category. In case a single room estimation is needed,
the beacon with the highest probability obviously dominates
and in the final case of a draw, the beacon that is placed in the
biggest room does. The whole procedure is depicted in Figure
2.

The way the algorithm is designed, it intrinsically favours
presence in bigger rooms, in the sense that when the same
RSSI is received by two beacons, the one in the bigger room
will have lower thresholds and will either be in a higher
category, or if not it will have a higher probability than the
beacon in the smaller room. For this reason, the algorithm
works best for the boundary locations in a room that are farther
away from the center of the room, than the center of a smaller
adjacent one.

IV. EXPERIMENTS AND EVALUATION

A. Experiment methodology

For our experiments, we used a Samsung Galaxy S6 (the
SM-G920F international variant) smartphone as the receiver
and the Kontakt.io Smart Beacons as the transmitters, set
in their default configuration settings (transmission power =
−12dBm and interval between transmissions = 350ms).

We gathered RSSI readings at grid locations in every room
throughout the floor. At every point, we collected a total of
200 averaged RSSI readings for every beacon. For our tests we
have empirically set N = 10, where N is the size of the set of
the latest RSSI readings of every beacon that is averaged. The
receiver was placed on a non conducting surface at roughly
one meter from the floor.

B. Propagation model calibration

In order to construct the specific propagation model for
our application, we placed a BLE beacon in the center of
a corridor. Then, we took multiple measurements at several
points with a known distance from the beacon, ranging from
0.5 to 7 meters. By constructing the line of best fit described
by Equation 2, the estimated values of the propagation model
parameters were p = −70.09 and n = 1.95.

C. Deployment in two locations

We have deployed our indoor positioning system in two
different environments. The first is a typical office environment
composed of three rooms as seen in Figure 3, housing eight
people. The area is divided by thick concrete walls and wooden
doors. The second is a house environment composed of five
rooms of different sizes and one corridor as seen in Figure 5.
Due to the corridor being oblong in this occasion, we have
divided its total area into two equal ones, so that we can
abstractly consider that the house is composed of a total of
seven rooms. The area is divided by thin concrete walls and
wooden doors.

D. Comparison

We compare the performance of our indoor positioning
system with room-level accuracy with the one without the
thresholds our algorithm introduces. That is a naive system
that only considers the magnitude of the RSSI readings and
assumes presence in the room with the highest one. Due to
the result of the naive system being discrete, only the room
with the highest probability given by our system is taken into
account. The same dataset was used for the comparison.

E. Office environment

In this experiment, RSSI readings were collected at 27
different points (9 for every room) as depicted by the circles in
Figure 3. The green points are the ones for which the error was
improved with the introduction of the localization algorithm,
while for the red one the error deteriorated. Table II presents
the average error per room and Table III presents the specific
locations in the office for which the error has changed. For
the rest of the points that the error remained unchanged (white
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Fig. 4. Relative error improvement in the office evaluation area.

points), the average error was 0.29%. As seen in Figure 4, the
average error of the points of room B has improved by 18.79%
and the average error of the points of room C has improved
by 30.88%.

F. House environment

In this experiment, RSSI readings were collected at 63
different points (9 for every room) as depicted by the circles in

TABLE II
PER ROOM ERROR COMPARISON IN THE OFFICE.

Room Error without Error with Relative error
the algorithm (%) the algorithm (%) improvement (%)

A 0 0 0
B 10.06 8.17 +18.79
C 12.06 8.33 +30.88

TABLE III
LOCATIONS IN THE OFFICE WITH AN ERROR CHANGE.

Point Error without Error with Relative error
the algorithm (%) the algorithm (%) improvement (%)

13 53.5 40 +25.23
15 11.5 10.5 +8.7
16 19.5 17 +12.82
19 86.5 50 +42.2
20 21.5 25 -16.28
25 0.5 0 +100
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Fig. 5. House evaluation area and targeted locations (green for the points
with an error improvement, red for an error deterioration).

Figure 5. Once more, the green points are the ones for which
the error was improved with the introduction of the localization
algorithm, while for the red ones the error deteriorated. Table
IV presents the average error per room and Table V presents
the specific locations in the house for which the error has
changed. For the rest of the points that the error remained
unchanged (white points), the average error was 6.07%. As
seen in Figure 6, the average error of the points of room A
has improved by 8%, of room B by 18.91%, of room E by
13.52%, of room G by 8.9%, while the average accuracy of
the points of room D has deteriorated by 9.09%.

G. Discussion

The presented algorithm was designed in order to improve
the accuracy in the boundary locations. These are the locations

TABLE IV
PER ROOM ERROR COMPARISON IN THE HOUSE.

Room Error without Error with Relative error
the algorithm (%) the algorithm (%) improvement (%)

A 9.72 8.94 +8
B 8.22 6.67 +18.91
C 0 0 0
D 1.83 2 -9.09
E 21.78 18.83 +13.52
F 15.33 15.33 0
G 18.72 17.06 +8.9
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TABLE V
LOCATIONS IN THE HOUSE WITH AN ERROR CHANGE.

Point Error without Error with Relative error
the algorithm (%) the algorithm (%) improvement (%)

2 2.5 2 +20
3 25 24.5 +2
9 29.5 23.5 +20.34
11 9.5 10 -5.26
16 54 39.5 +26.85
32 7.5 8.5 -13.33
34 0.5 1 -100
40 46.5 44.5 +4.3
43 45 24 +46.67
44 100 96.5 +3.5
62 45 30 +33.3

in a room that are farther away from the center of the room,
than the center of a smaller adjacent one. As seen from the
measurements, accuracy was improved in the following such
locations: points 13, 16 and 19 in the office evaluation area
and points 3, 9 16, 40, 43 and 44 in the house evaluation area.

The deterioration of the accuracy in some points was mainly
due to the combination of the RSSI fluctuating and the fact that
the presented algorithm intrinsically favours presence in bigger
rooms. This especially holds true for the point 20 in the office
evaluation area, where although the RSSI from the beacon
in room C was in average higher than the RSSI from the
beacon in room B, the fluctuation of the signal along with the
thresholds introduced by the algorithm eventually decreased
the localization accuracy.

V. CONCLUSION

In this paper we have presented an easy to deploy BLE-
based indoor positioning system with room-level accuracy.
The system only requires the geometry of the rooms and BLE
beacons attached to the ceiling in the center of every room. The
presented algorithm computes two RSSI thresholds for every
room, and based on them, categorizes the RSSI readings and
finally estimates a room location.

We have deployed our system in two different locations,
an office environment composed of three rooms and a house
environment composed of six rooms. After comparing it with
the no-threshold approach, we saw an improvement of room
estimation accuracy, especially in the boundary locations of
the rooms. These are the locations in a room that were farther
away from the center of the room, than the center of a smaller
adjacent one. Overall, out of the 90 points that measurements
were taken, the algorithm managed to improve the localization
accuracy of 13 of them, decreased the accuracy of 4 and did
not affect the rest.
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