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Abstract—A common problem for indoor positioning methods
is the fact that the differences in the reception characteristics
among devices may significantly deteriorate the performance of
a positioning system. Ranging algorithms for positioning rely
on the accuracy of the parameters of the propagation model.
This model is used to infer an estimate of the distance of a
mobile device from each access point from the Received Signal
Strength Indication (RSSI). In this work we present an algorithm
which dynamically recalculates and improves the propagation
model. The improvement of the model parameters fits the envi-
ronment’s characteristics and, more importantly, the reception
characteristics of the device used. The proposed algorithm is
tested with different devices at an indoor deployment covering
a large area where Bluetooth Low Energy (BLE) technology is
used. The experimental results show that the proposed method
offers a significant accuracy improvement to some devices while it
slightly improves the performance of those that are more properly
tuned.

Keywords—Indoor Positioning, Localisation, Bluetooth, RSSI,
Propagation Model, Device Independence

I. INTRODUCTION

The interest in the field of indoor positioning has risen over
the last years. The broad use of smartphones has familiarized
the public with Location-Based Services (LBS). Most users
of smart devices have had the experience of being positioned
outdoors, with the use of Global Navigation Satellite Systems
(GNSS) like the Global Positioning System (GPS). Indoor
positioning is following up, without having offered so far a
generic solution as the GPS.

Several technologies are being used in order to localize
users indoors. A technology commonly used for positioning
in indoor environments is Wi-Fi [1],[2]. A main advantage
of Wi-Fi is that most buildings have several Wi-Fi Access
Points (AP) in order to provide internet access, so the required
hardware is already installed. On the other hand, this may
also be a disadvantage, because the way the access points
were placed may be convenient for network coverage, but not
optimal for positioning. Another restriction is that the Wi-Fi
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APs must be plugged, a fact that may restrict the freedom in
the way they can be placed.

A technology which has been widely used during the last
years is the BLE technology. Bluetooth beacons function with
batteries and are small in size, thus they offer flexibility in the
way they can be deployed in a building.

One of the most common positioning techniques is the
utilization of the Received Signal Strength (RSS). RSS fin-
gerprinting is a popular approach, which requires an off-line
phase in which a radiomap of the localization area needs to
be created. During this procedure, a reference device is used
to record fingerprints of specific locations. The fingerprint of
a location is the set of RSS receptions of each access point
at said location. At the online phase, the receptions from all
access points are compared with the fingerprints. An estimated
position is inferred based on a similarity measure between the
receptions at a certain time, and the recorded fingerprints.

Another way of utilizing the RSS is by inferring a distance
estimate. Having a distance estimate from each access point,
a position estimate can be calculated, with the use of ranging
methods like multilateration [1] or weighted centroid [3]. The
exact location of the access points is needed for these methods,
along with a propagation model that corresponds the RSSs
to distances. An advantage of these methods is that they
do not require an off-line surveying phase, which can be
very time consuming. Another advantage is that a potential
displacement of an AP or the addition of new ones, brings
only the obligation of adding the new APs’ positions in the list
of known APs, whereas in RSS fingerprinting such a change
would require the repetition of the off-line phase.

A common problem for both fingerprinting and ranging
methods that rely on signal strength is that they suffer from
fluctuations of RSS receptions. Moreover, ranging methods use
a propagation model whose parameters rely on many factors,
such as the environment and the devices used. Subsequently,
a specific setting of the propagation model’s parameters may
be adequate for a reference device with which the positioning
system is tested, but it may also be faulty for another device
with different reception characteristics.

In this work, we present a novel approach on recalculating
the propagation model parameters on-line, in ranging position-
ing methods. In this way, a device, whose reception charac-



teristics differ from the ones used to create the propagation
model, is using the initial range estimates along with the
position estimates to gradually correct the propagation model.
The experimental testing of the method is very promising,
since an accuracy improvement above 13% was achieved with
a device different from the one used for the creation of the
propagation model. It is noteworthy that not only several
devices were used for the test, but also the beacons used
and the environment of the deployment where the method
was tested were different from those that were used for the
initial propagation model calculation. The performance of the
device used to create the propagation model also showed
slight improvements. The presented method contributes to the
recurrent research with the goal of device independence in
indoor positioning systems. It also makes it possible to skip
the propagation model calculation when a system is deployed
at a new environment, with a different kind of beacons.

The rest of this paper is organized as follows. After
commenting the related work in Section II, and introducing
some preliminaries in Section III, in Section IV the proposed
method is extensively presented. In Section V, we analyse and
discuss the results of the experimental measurements from a
real deployment. Lastly, drawn conclusions along with future
directions are discussed in Section VI.

II. RELATED WORK

During the last years, the research towards propagation
model correction and device independence for indoor posi-
tioning techniques has blossomed. Many studies have focused
on this goal for both surveying (fingerprinting) and ranging
positioning techniques.

An early work in this domain by Mazuelas et al. [1] tunes
the path loss exponent characterizing each AP on a wireless
local area network (WLAN). The motivation of that work
is mainly directed towards skipping the propagation model
calibration step and not device independence per se. The
tuning is done by finding the set of path loss exponent values
that solve a least square optimization problem concerning the
distance of the estimated position from the radical axes of
the range estimates. The proposed solution is elegant and
appealing, thought quite complex, and also relies on a rather
strong assumption when working with several devices, that
parameter p (received RSS at a reference distance) can be
considered a constant.

In another study [4], the authors adjust the propagation
model by utilizing contextual knowledge of where the walls
are in a building, in order to adjust the model’s parameters
of each AP. They do so by introducing an attenuation factor
for every wall between said AP and the estimated position,
which requires a procedure of defining the areas where walls
exist. Recent studies [5], [6], battle the problem of RSS-
based localization when the channel parameters are considered
unknown, providing however only simulations and no experi-
mental results.

Extensive literature exists ( [7], [8], [9], [10], [11], [12], [13]
and references therein) dealing with the impact of device

diversity on fingerprint positioning. Inspiring solutions have
been proposed by these studies, including among others, signal
strength histogram equalization [7], [8], spatial mean normal-
ization [9], signal strength ratio utilization [10], differential
fingerprinting [11], fusing of crowd-sourced RSS data into
usable radiomaps of differential fingerprints [12], and ranking
of RSS values from a set of APs from high to low [13], since
ranking is device independent.

From the volume of the relevant work of this rather recent
field, it is evident that methods of automatic self-calibration
or re-calibration as well as calibration-free methods are a
trending topic. Before proceeding to the presentation of the
self-calibration method, the explanation of some preliminary
elements is in order.

III. PRELIMINARIES

A. Propagation Model

For ranging indoor positioning techniques, a distance esti-
mation from the APs is necessary. More specifically, when
using RSS methods, a propagation model is used to infer
a distance estimate from a value of the Received Signal
Strength Indicator (RSSI). The propagation model commonly
used for indoor positioning is the log-distance path loss model,
presented in Equation 1. The propagation model, with which
the expected received power pi in distance di is calculated, is
characterized as:

pi = p− 10 n log10(di/d0) +X (1)

In this formula, p is the received RSSI at a reference
distance d0, and n is the path loss exponent which depends
on the transmission channel. The path loss exponent n can be
considered to be also influenced by the way the transmitter and
the receiver are made (for example, different device packaging
materials alter the channel) or placed (since the transmission
is not uniform towards all directions). Theoretically, n = 2 for
no attenuation in power, whereas in actual indoor deployments
values of n > 2 better describe the power loss over distances,
while values n < 2 are suitable if the signal is enhanced by the
environment. Lastly, X is a random noise, which is assumed
to have a Gaussian zero-mean distribution.

In order to translate an RSSI reception to a distance esti-
mate, the parameters p and n need to be defined. Usually, the
determination of these parameters requires a calibration step.
This calibration can be completed with a straightforward pro-
cedure: several receptions are recorded at predefined distances
from the emitting beacon. The best fitting curve describing
these measurements, obtained by regression, provides the p
and n values that optimally describe the RSSI-distance relation
in Equation 1. The accuracy of this method can be increased
by using a big amount of measurements. This is because the
noise is assumed to have a Gaussian zero-mean distribution,
and thus, using a plethora of measurements for each predefined
distance increases the probability of reducing the average error.

However, this method has some clear limitations. Firstly, the
parameters inferred rely on the environment of the calibration.



Performing the calibration with one beacon at a certain loca-
tion, and using the obtained parameters for all the beacons of
the same type that are placed at a deployment may be handy,
but does not describe the particularities of the environment
around each beacon, like possible reflections and Non-Line Of
Sight (NLOS) cases. On the other hand, calibrating the prop-
agation model of each beacon after it is placed may require a
big effort and it can be a great restriction for big deployments
with many beacons. Secondly, apart from the transmitter (the
beacon) and the channel (the environment between the beacon
and the area that users move), the parameters also depend
on the receiver’s (the mobile device’s) characteristics. If the
calibration procedure is repeated with other mobile devices,
with different reception characteristics, the resulting estimates
of the propagation model parameters will differ among them.
Thus, using a propagation model inferred by a single device
introduces an inherent error when the model is used by another
device.

B. Positioning Algorithms Used

With the use of the propagation model, a distance estimate
can be inferred from the RSSI received from each beacon.
Having obtained an estimation about the distance of the
mobile device from each beacon, we proceed to the position
estimation. In this work, we use two positioning algorithms,
the weighted centroid algorithm [3], and a multilateration
algorithm. In both algorithms, only the N beacons that are
detected to be closer to the mobile device are used. In [3], it
is shown that keeping the N = 4 closest beacons minimizes
the expected estimation error, and thus this value is used in
the experiments of this work.

The weighted centroid algorithm is a simple, straightforward
positioning method, with very low computational complexity.
Let di be the estimated distance from the ith closest beacon,
and (xi, yi) the beacon’s position. The estimated position is
given as the weighted centroid of the positions of the N = 4
closest beacons, using as weight wi = 1/d1 the inverse of the
distance estimate from this beacon.

xest =

N∑
i=1

xi

di

N∑
i=1

1
di

, yest =

N∑
i=1

yi

di

N∑
i=1

1
di

(2)

A notable property of this method is that it restricts the
position prediction inside the area that the beacons’ positions
define, making it impossible to give a position estimate outside
this area. Thus, it is indispensable for this positioning algo-
rithm that beacons are placed in a way so that they surround
all the area that is desired to be covered. When working
with a badly tuned propagation model, limiting the estimates
inside the area of the surrounding beacons can be a desirable
property, for limiting the area of the potential positioning error.

The other approach is the multilateration method. Four
circles are drawn, using each beacon’s position (xi, yi) as the
center, and the corresponding estimated distance di from the

ith beacon as radius. If the distance estimates are correct, all
circles will intersect at a single point. As the distance estimates
are subject to noise, a single intersection is unlikely. Therefore,
all the crossing points of each pair of circles are stored. In
case the circles do not intersect, we store the points of the
circles which are crossed by the line connecting the centres
of the two cycles. We characterize each crossing point with
a weight equal to the inverse value of the smallest radius of
the two circles in which the point belongs. Then, the weighted
centroid of all the stored intersection points, is the estimated
position.

IV. SELF-CALIBRATION METHOD

A. Presentation of Self-Calibration Method

The proposed self-calibration method acts dynamically, as
the user moves and receives position estimates. Let M be the
path loss model used (defined in Equation 1), characterized by
the two parameters:

M = [p, n] (3)

Initially, a set of default values of the parameters p and n
is used. The position estimates received are used for gradually
adjusting the values of the parameters. Before proceeding to
details, some definitions are in place. Let

dest = [dest1 , dest2 , . . . , destN ] (4)

be the set of distance estimates from each of the N closest
beacons used for positioning, as inferred by using the propa-
gation model defined in Equation 1. These estimated distances
are used in order to infer a position estimate (xest, yest).
Furthermore, let

dpos = [dpos1 , dpos2 , . . . , dposN ] (5)

be the set of the distances of the position estimate (xest, yest)
from each of the N closest beacons. Ideally, dest and dpos

should be the same, but due to noise and the inaccuracy of
the model used, they tend to differ. The method consists of
two steps that are performed after each position estimation: an
optimization step, and an update step.

At the first optimization step, the optimization problem
presented in Equation 6 needs to be solved for each of the
N closest scanned beacons.

M∗ = argmin
M

∣∣∣dpos − dest(M)

∣∣∣ (6)

The model M∗ resulting from this step is the one that
minimizes the difference between the two distances: dpos, that
is the distance from the beacon to the estimated position as
calculated before the optimization step, and dest(M), that is the
estimated distance of the mobile device from the beacon as
inferred from the received RSSI by using the model in search
M , that is the tunable argument. We will refer to M∗ as the
optimal model for the consistency of the latest reception.



Since the algorithm updates the parameters of the model at
each reception, we will refer to the state of the model at time
t as M [t].

At the second updating step, the current model M [t] is
updated with the result of the optimization step (M∗[t]) based
on the latest reception, providing the model M [t + 1] to be
used at the next reception, at time t+ 1. The update is made
with the following logic.

M [t+ 1] = αM∗[t] + (1− α)M [t] , α ∈ [0, 1] (7)

The update rate α in Equation 7 determines the level of
influence of the optimal model for the consistency of the latest
reception M∗[t] in updating the model used for the next step
M [t+1]. The tuning of the update rate, as well as other issues
regarding the optimal setting of the self-calibration method are
discussed in the following subsection.

B. Tuning of the Self-Calibration Method

The proposed method has several settings that need to be
tuned. One of the challenges in finding the best settings for this
method is selecting the optimization algorithm for the first step
(Equation 6). One option would be to perform a Brute Force
search at the space of possible solutions (all acceptable values
of the parameters p and n of the model M ). This option has the
evident drawback of being computationally expensive. Thus,
the alternative of using a heuristic algorithm could reduce
the computational cost. Furthermore, the method starts with
a set of default values for the model’s parameters, so there
exists a meaningful starting point for a local search algorithm,
like Hill-Climbing. In addition, the parameters in question are
expected to be relatively close to their default values rather
than at the limits of the search space. For this reason, a local
search solution is more likely to avoid some extreme values at
the limits of the search space that could be provided due to a
potential noisy reception. The efficiency and the computational
cost of these two approaches are discussed in Section V.

Regarding the optimization algorithm, there are some im-
portant parameters to be set. Initially, the limits of the search
space should be defined (nMIN ≤ n ≤ nMAX , pMIN

≤ p ≤ pMAX ). Furthermore, the granularity of the search
algorithm should be defined, for both dimensions of search (p
and n). Let pstep and nstep be the step size for each respective
dimension.

Lastly, a crucial decision to be taken is the value of the
update rate α. Choosing a large value for α, which would be
close to 1, would mean that there is a big danger of overfitting
the model in cases of noisy receptions. Using this completely
wrong model at a following positioning step could deteriorate
the quality of the position estimations, and eventually lead
to diverging from the optimal model. On the other hand, a
small value of α, close to 0, offers the opportunity of reducing
the influence of occasional outliers, or even evening out their
effect smoothly. A low update rate however should be carefully
chosen in a way that allows the model to change with a speed

that is sufficient in order to improve the overall positioning
system.

The following Section contains a detailed practical exami-
nation of all the above presented aspects of the self-calibration
method.

V. RESULTS OF EXPERIMENTAL MEASURMENTS

For the evaluation of the proposed self-calibration method,
measurements from an actual deployment of a positioning sys-
tem were used. A broad area (120 * 40 m) of an underground
parking was used as the test environment (left half part of
Figure 1). In this area, 40 BLE beacons were placed at a rhom-
bus grid pattern. The path shown in Figure 1 was followed
by a user holding three different mobile devices: a Samsung
Galaxy S5, a Samsung Galaxy S4, and a Samsung Galaxy Note
3. During this path, each device recorded all the necessary
information of the received signals (RSSI, timestamp, beacon
ID) in order to later run the positioning algorithm off-line.
Using the recorded raw data (RSSI, timestamp, beacon ID),
position estimates can be calculated off-line either with or
without the proposed self-calibration method. It was chosen
to record and use the raw data in order to have a consistent
comparison over the same dataset.

Fig. 1. The path followed in the parking. The area where coverage is provided
is the left half side of the parking, and its dimensions are 120 by 40 m.

Moreover, the user holding the devices was informing the
recording application at every moment that he was passing by
each one the 50 predefined checkpoints of the path (the nodes
of the path in Figure 1). Thus, not only signal receptions have
their exact timestamps, but also the 50 checkpoints of the path



are linked to the exact time that the user was there. In this way,
assuming that the user was moving at a steady pace between
two consecutive checkpoints, the real position (ground truth)
of the user can be inferred at any moment during the path.
Consequently, after obtaining the position estimates from the
raw data by a positioning algorithm, the error of each position
estimate at any moment can be precisely calculated.

It was chosen to use as default values of the model,
the values of an old deployment, in a different environment
(corridors of the University of Geneva) with a different brand
of beacons (‘tod’ beacons [14]) than those of the current
deployment at the parking (‘kontakt’ beacons [15]), that were
estimated using a Samsung Galaxy S4. These default values
were calibrated to be p=−62.72 and n=2.28. Also, regarding
the tuning of the parameters presented in Section IV-B, the fol-
lowing values were chosen empirically: the values nMIN=1,
nMAX=3, pMIN=-45 and pMAX=-75 set the limits of the
search space, while pstep=1 and nstep=0.02 determine the
step size of the search.

In Figure 2, we see the statistics of the achieved positioning
accuracy with the three devices (Samsung Galaxy S5, S4, Note
3), for several values of the update rate α. In Figure 3, the
box plot characterizing the accuracy of one device (Samsung
Galaxy S5) highlights the median value of the positioning
error with the red line inside each box. The limits of each
box represent the 25th and the 75th percentile of the error.
Apart from the box plot, the black stars connected with a
black line show the mean value of the error of each case. The
positioning algorithm used for these tests was the weighted
centroid algorithm. Similar results were achieved also with
the multilateration approach.

Fig. 2. Mean and median values of the positioning error of the three devices
used, for several values of the update rate α.

For α=0, the statistics concern the pure positioning algo-
rithm without the self-calibration method. For low values of
α in the range 0.01 ≤ α ≤ 0.04, we see that all devices
achieved an improvement in accuracy. In Figure 2, we see
that the S5 had the greatest improvement in accuracy among

Fig. 3. Box plot and mean values (black line) of the positioning error for
several values of the update rate α, using a Samsung Galaxy S5.

the devices, going from a mean value of 5.37 m for α = 0
to 4.62 for α = 0.02 (13.88% improvement). For greater
values of α, it is evident that the accuracy degrades. In
addition, the other two devices have a less impressive but still
satisfactory performance. Both S4 and Note 3 achieved a ∼5%
improvement for α = 0.02.

An important desired feature for the self-calibration method
is that not only it improves the accuracy when this is possible,
but also that it does not degrade the system’s performance
when the conditions (high noise, very imprecise default model)
do not allow the convergence to a more appropriate model. Af-
ter performing multiple tests, we have concluded empirically
that a value of α = 0.02 handles a satisfactory trade-off of
these two attributes.

In Table I, the mean error before and after introducing the
self-calibration is presented, for several pairs of initial values
of the propagation model parameters. The data collected with
the S5 are used. The first value of each cell is the mean error
of pure positioning, while the second one is the one using the
self-calibration method with α = 0.02. Lastly, the percentage
change of the mean error appears in the brackets.

TABLE I
MEAN ERROR BEFORE AND AFTER SELF-CALIBRATION

p n=2 n=2.3 n=2.6
-50 9.78 - 9.74 (-0.4%) 8.41 - 7.91 (-5.9%) 6.78 - 6.04 (-10%)
-55 8.30 - 7.65 (-7.8%) 6.68 - 6.05 (-9.4%) 5.23 - 5.14 (-1.7%)
-60 6.56 - 5.51 (-16%) 5.19 - 4.77 (-8.0%) 5.36 - 4.72 (-12%)
-65 5.26 - 4.73 (-10%) 5.34 - 4.92 (-7.8%) 5.36 - 5.37 (+0.1%)
-70 5.31 - 5.14 (-3.2%) 5.34 - 5.82 (+8.9%) 5.36 - 6.43 (+19%)

Having a very bad initial estimation of the propagation
model parameters, far from the optimal one, significantly
deteriorates the position estimates, which are used in the
self-calibration method. Thus, in these cases of bad initial
estimations, as for example with (p, n)=(−50, 2) or with
(p, n)=(−65, 2.6), we observe that the self-calibration method



has similar performance to the calibration-free case. In most of
the cases of Table I the method improves the average perfor-
mance. Only at the two extreme cases, for (p, n)=(−70, 2.3)
and (p, n)=(−70, 2.6), the low quality of the initial estima-
tions does not allow the method to improve the accuracy, but
also results in a drop of the achieved accuracy.

In Figure 4, accuracy statistics of the two positioning meth-
ods are reported. Both multilateration and weighted centroid
(which was used for the previous experiments) achieve similar
patterns of improvement in accuracy for the presented values
of α.

Fig. 4. Mean and median values of the positioning error using multilateration
and weighted centroid, for several values of the update rate α, using a
Samsung Galaxy S5.

Lastly, it is worth comparing the two algorithms used for
the optimization step, Brute Force and Hill-Climbing. Both
algorithms have a very similar performance for all values of
the update rate α. Similarly to Hill-Climbing, Brute Force
has the best performance for low values of the update rate
and more specifically, for α=0.02. In terms of computational
effort though, Hill Climbing clearly outperforms Brute Force,
as expected. The average time for estimating the positions of
the path of Figure 1 over 1000 repetitions was 82 ms for Hill
Climbing and 342 ms for the Brute Force search. The tests
were done off-line using the recorded data. Nevertheless, since
the algorithm is to be used on-line, on mobile devices, it is
indispensable to minimize the computational effort, especially
when this is possible without any impact on the performance.

VI. CONCLUSIONS AND FUTURE WORK

A simple and effective algorithm for automatic self-
calibration of the propagation model in ranging position-
ing techniques is introduced in this work. At every new
deployment of a positioning system, a potential calibration
procedure that tries to model the propagation characteristics,
apart from being time consuming, cannot predict the reception
characteristics of any mobile device that could use the posi-
tioning system. To cope with this issue, the proposed method

offers a robust way of correcting the propagation model. It
offers a significant improvement to some devices (13.88%
improvement of mean error for the Samsung Galaxy S5) while
it slightly improves the performance of those that are more
properly tuned (a ∼5% improvement for the Samsung Galaxy
S4, and the Samsung Galaxy Note 3). The proposed method
can be seen in scope of the research towards device indepen-
dence, as well as in the context of facilitating calibration-free
deployment at new areas.

As future work, we plan to perform extensive tests, in search
for the optimal tuning of the numerous parameters that play a
role in this method. We firstly intent to gather a big amount of
data, in the same way that we recorded with the three devices
the data used for this study. Having the ground truth and the
raw signals from numerous paths at several deployments, we
believe that we can obtain a strong certainty about the optimal
tuning of the method.
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