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Abstract— How do we evaluate the performance of an indoor
positioning system? In addition, in which way can the system
be optimally tuned for a certain environment? These are the
questions addressed in this study. We propose a practical, cost ef-
ficient methodology for evaluating and tuning indoor positioning
systems. The methodology has two main phases. In the first online
recording phase, the ground truth information is gathered, and
raw signals are recorded. In the second phase, offline positioning
algorithms utilise the recorded information to infer position
estimations which can then be precisely evaluated. An automatic
parameter optimization methodology, which recommends optimal
tunings for the positioning algorithm, is presented as a key utility
of this work. An overall advantage of the proposed method
is the fact that the recorded data guarantee the repeatability
of tests, and allow consistent comparisons among different
algorithms, creating the perspective of a testbed based on real
data. The implementation of the methodology is exemplified
with the presentation of the GpmLab Android application and
the GpmStudio desktop platform, tools which assist our main
positioning framework, the Global Positioning Module (GPM).

Index Terms—Indoor positioning, Tuning, Ground truth defini-
tion, Positioning evaluation, Tracking

I. INTRODUCTION

During the last years, the domain of indoor positioning has
attracted a lot of attention of both the academic community and
the industry. So far, no universal standard has been established
defining the way of measuring and evaluating the performance
of a positioning system.

Having a consistent way of measuring the performance
of positioning systems is indispensable. It is evident that a
reliable evaluation methodology allows a research group to
share with the community the performance of their positioning
system. Moreover, it provides the group with the ability of
having a continuous overview of the impact of the improve-
ments that they attempt on the existing methods, as well as
evaluating new algorithms and comparing them with others.

This work was co-funded by the State Secretariat for Education, Research
and Innovation of the Swiss federal government and the European Union, in
the frame of the EU AAL project SmartHeat (aal-2014-153).

©2016 IEEE

One of the main challenging issues in the evaluation pro-
cedure is the ground truth acquisition. In a relevant recent
study [1], the authors studied the publications from five recent
indoor positioning conferences, and found that a high percent-
age of the authors describe their methods of ground truth data
gathering poorly or do not describe them at all. Furthermore,
they express their concern about the reproducibility of the
experiments of the field. Given the above, we believe that
the discussion of the ways that we test, measure and evaluate
indoor positioning systems is indispensable.

An interesting study in this domain [2], describes the
evaluation methods by grouping them in three categories. The
first method is (i) Static evaluation, in which a device is left at
a specific location for a sufficient amount of time. Then, the
evaluation is made by analysing the position estimates that
the System Under Test (SUT) provided during this time. A
major drawback of this category is that it does not reflect
most real use cases, which are expected to be more dynamic.
This requirement is addressed by the other two categories: (ii)
Dynamic evaluation using a reference positioning system and
(iii) Dynamic evaluation with predefined geometrical paths.
Category (ii) methods use a positioning system with high
accuracy in order to evaluate the SUT. The requirement of
using another system may imply significant additional de-
ployment effort and cost. In the third category (iii), specific
paths are defined in advance at a test field, and then followed
by a person that records the estimations of the SUT. The
method presented in this paper belongs in this category, which
combines many advantages, such as realistic capture of real-
life usage scenarios, ease of deployment, and cost efficiency.

Furthermore, apart from the evaluation methodologies that
have started to draw significant attention by the indoor po-
sitioning community, the methodologies of optimally tuning
a system is also a domain worth discussing, sharing ideas
on and improving. Assume a positioning expert called to
deploy a positioning system, tune it properly, present it and
evaluate its performance. It is common in the community
to discuss the parts of deploying and its requirements, the
positioning methods, as well as the ways of evaluating the
system’s performance. It is not rare though, that the step of



how the system is tuned accordingly is left blurry, mentioning
for example an empirical selection of the appropriate settings.
The question of how to tune a positioning system at a new
deployment has drawn our interest. Investigating this issue,
gave as fruit the present work. This study is the natural
and significant expansion of a previous work [3], where we
focused on ground truth definition and position evaluation of
online positioning solutions. In the current study, we present a
practical evaluation and tuning methodology, which simplifies
the procedure of optimally tuning a positioning system at a
new deployment. A more detailed description is given at the
end of the following section, where after presenting the related
work we proceed in explaining the contributions of the current
work.

The rest of this paper is organized as follows. In Section II,
the related work is discussed, along with the contributions of
this study. After presenting the proposed method theoretically
in Section III, the implementation of the method with the
related software tools are shown in Section IV. In Section V,
we provide an overview of the use cases of the methodology
and discuss its particularities. Lastly, the future directions of
this work are discussed in Section VI.

II. RELATED WORK

The definition of the ground truth information used to
evaluate positioning systems is a crucial subject for the in-
door positioning community. As mentioned earlier, a recent
study [1] expresses the concern of its authors about the lack
of strictly defined procedures of ground truth acquisition.
Furthermore, during their analysis, the authors of that work
found several studies that refer only to the spatial information
of the ground truth. Hence, they highlight that the temporal
information of both the ground truth and the position estimates
is also indispensable.

There are studies [4] that try to simplify the procedure of
evaluating positioning systems, by defining the ground truth
only with spatial (and no temporal) information, targeting
to approximate the cumulative statistics of the positional
error. Nevertheless, even for achieving this approximation,
strict requirements are set concerning the symmetry of the
deployed access points and the form of the path followed
for the recording. More precisely, it is required that all base
stations are deployed symmetrically, so that the cross-track and
along-track errors can be considered statistically independent.
Then, an approximation of the statistical distribution of the
overall positioning error is given, based on the cross-track error
(vertical deviation from the predefined path).

Recent indoor positioning competitions, like the Microsoft
Indoor Localisation Competition [5] (performed in the context
of the ACM IPSN conferences), and the EvAAL competi-
tion [6] (in the context of the IPIN conferences) define strict
methodologies of evaluating positioning systems. In IPSN, a
list of specific evaluation points are defined in the test area.
A tester carries a device above each of the evaluation points,
waits for a couple of seconds at that point, and records the
location reported by the SUT. This methodology evaluates

precisely the accuracy of position estimates statically, as
discrete points, though it does not aim to evaluate a continuous
dynamic movement of users.

The competition of IPIN defines a dynamic way of eval-
uation, aiming to cover this aspect. Again, a list of specific
evaluation points are defined in the test area. The tester follows
the path defined by a sequence of evaluation points with a
natural pace, and without performing an artificial pause at the
evaluation points. The tester records at the device the times-
tamp of the moment he passed from each evaluation point,
so that the most recent position estimate is compared to the
position of the evaluation point. This methodology covers the
more realistic use cases of moving users, as all measurements
are taken dynamically. It is noteworthy though, that in contrast
with the IPSN competition, the ground truth position and the
position estimate are not taken simultaneously, introducing
implicitly as a factor in the evaluation, the frequency of
production of position estimates. Thus, this method has the
feature of dynamic recording, and the feature of evaluating at
random moments of the walk (when passing by an evaluation
point) the latest position estimate that a user of the SUT would
see in his screen.

An impressive contribution in the direction of benchmarking
of indoor positioning systems has been the work performed
in the context of the EVARILOS project [7],[8]. This project
identifies the pitfall of reproducing research results of indoor
localization in real life scenarios, as they suffer from uncon-
trolled RF interference and from the weakness of numerous
published solutions being evaluated under individual, not com-
parable and not repeatable conditions. EVARILOS, as well as
other works [2], [9], [10], [11] perform their evaluation with
the use of another system of high accuracy, such as a robot or
cameras, as a reference system. Using a precise robotic system
as reference is a valuable solution for strictly measuring and
evaluating systems in controlled test areas. Nevertheless, this
approach has some limitations, such as the cost, the speed
with which a broad area can be measured, and its mobility
limitations (obstacles, stairs, etc.). Furthermore, it might be
much less complex for a human tester to perform the task
in case that an evaluation is needed in the context of tuning
a positioning system, when deploying it in a crowded public
space (like a shopping mall), that might also have the above
mentioned limitations. Nevertheless, when focusing purely
on a precise evaluation, methods that utilise high accuracy
reference systems are precious.

Apart from the definition of the ground truth, recording
simultaneously the raw data received from the technologies
used for positioning, is of high importance. Having this
information combined (ground truth and raw data), facilitates
the reproducibility of tests since using the same data allows
consistent comparisons among systems. In an influential se-
quence of publications [11],[12],[13],[14],[15], the authors
from the Free University of Berlin have worked in this direc-
tion. After defining a reference system for indoor localisation
systems [11], they present the concept of a visual testbed [12],
in which a robot spans an area recording both the raw signals



and the ground truth information throughout the area. These
data are offered to be used as a testbed for positioning systems.
Following, they perform several experimental evaluations of
systems [13],[14],[15], using their robotic reference system.

In the current work, we have tried to address most of the
problems discussed above. Similarly to both the above men-
tioned competitions (IPSN and IPIN), the proposed methodol-
ogy utilizes a predefined path in which a tester passes through
predefined checkpoints. As our intention was to evaluate the
continuous performance of the SUT, the evaluation is not
limited only to the checkpoints, but concerns the continuous
production of estimations of the system (as opposed to the
aforementioned competitions). We do so, by introducing two
ways of interpolating the ground truth information. Further-
more, opposite to the IPIN competition, the ground truth
position and the position estimate are simultaneous, without
having to perform the artificial stop required in the IPSN
competition. In addition, since the data collected with the
proposed methodology can be repeatedly used to test offline
positioning algorithms and evaluate their performance, the
perspective of a testbed is created. Lastly, we introduce the
perspective of utilising the previous steps, to create a tuning
tool that facilitates the task of optimally tuning a system.

III. PROPOSED METHOD

In this section, we present the proposed methodology in
its full extent. Firstly, we offer an overview of the global
architecture. Then, we proceed with a detailed presentation
of the online data recording method, followed by the off-
line positioning and evaluation part. Lastly, we analyse the
procedure of optimally tuning the positioning algorithm.

A. Architecture

In this subsection, we describe the workflow of our pro-
posed methodology. It consists of two main phases: an online
recording phase which takes place at the environment of the
deployment, and an offline phase. The workflow is summa-
rized in Figure 1. During the first online phase, the spatio-
temporal ground truth information is gathered (the spatial
information (x, y), plus the time t), along with the received
raw signals (the signal s, at time t). In the second phase,
an offline positioning algorithm is used to infer position
estimates (the spatial information (x, y), along with the time
t), using the recorded raw data. Different settings of the
parameters of the tested algorithm, result to different lists of
position estimates (containing spatial information (x, y), plus
the time t) which can be directly compared with the ground
truth information, and evaluated. By comparing the position
estimates of the offline positioning algorithm with the ground
truth, the parameters of the positioning algorithm can also be
properly tuned, and its performance can be optimized.

B. Online data recording

For the online phase, a predefined path needs to be designed.
This path consists of a list of positions that will be followed,
one after the other, by a tester and will serve as checkpoints.

Fig. 1. The overall workflow of the proposed methodology. The purple box
highlights the online part, while the yellow one indicates the offline part.

The tester will have to follow this predefined path, holding the
mobile device that will continuously record all the raw signals
that it receives during the path, along with the timestamp
of each reception. The tester has simply to indicate to the
recording application the moment at which he passes over each
checkpoint. In this way, every predefined checkpoint is marked
with the exact timestamp indicating when the tester passed by
it. The tester should move on the path, which is composed
of the straight linear segments that connect these checkpoints,
at a steady pace. Note that the pace should be steady during
a linear segment connecting two checkpoints, but it is not
required to be the same among different segments.

With this procedure, the exact time that each checkpoint was
crossed is recorded. The spatio-temporal ground truth infor-
mation for every moment between the crossing of two check-
points can be inferred with linear interpolation. Under the
assumption of a steady pace between consecutive checkpoints,
the result of the linear interpolation is the accurate ground
truth. The density of the checkpoints handles a trade-off
between minimising the effort included in the recording pro-
cedure and minimising the interpolation error. Having dense
checkpoints allows the user to frequently inform the recording
application about his true position, reducing the length of the
segments in which the interpolation is done. In this way, the
error introduced by the interpolation is minimized. On the
other hand, a more sparse placement of checkpoints simplifies
the procedure, with the risk of introducing a higher error due
to interpolating over bigger segments.

There are different approaches that utilize a predefined



path. A common method used (for example by the IPSN
competition) is the one in which the tester has to follow a path
with checkpoints, at which he is called to halt for a couple
of seconds, in order to receive a position estimate, and then
continue the path. Even if the SUT can continuously utilize
information received between the checkpoints (such as inertial
sensor data), the evaluation is actually a static one, as the tester
stops for taking a measurement. On the other hand, there exist
more dynamic evaluation methods (as the one performed at
the IPIN competition), where the user follows a path, without
stopping at the checkpoints. However, even if the measuring
procedure has the element of a continuously moving user,
the evaluation of the SUT is not continuous, but sporadic
since only a sampling of the most recent estimations at the
checkpoints is evaluated. Therefore, despite being dynamic,
the method does not fully capture the experience of a user
that would actually follow the path while receiving position
estimates.

In this work, we introduce two methods of interpolating
the recorded checkpoint indications of the tester, in order to
obtain the spatio-temporal ground truth information, and based
on this, to evaluate the position estimates. These methods are
discussed in the following subsection.

C. Offline positioning and ground truth interpolation

In the preceding online phase, all the necessary data needed
for feeding an offline positioning algorithm were recorded.
The collected raw data are utilized by the offline position-
ing algorithms, which produce position estimates from the
recorded raw signals. Thus, for any signal s received at time
t, a position estimate x, y is inferred. The same data can
feed different positioning algorithms, or the same algorithm
with several different settings of its parameters, resulting in
different position estimates.

As a simple verification method of the correct functioning of
the implementation of the methodology, apart from recording
only the raw data that feed an offline positioning algorithm,
it is recommended to also run the online version of the
algorithms, and record the position estimates. The results of
the online and the offline algorithms should be identical, under
the same parameter tuning and the same data.

The spatio-temporal information of the position estimates
inferred, can be compared with the ground truth, in order to
evaluate the accuracy of the estimation. In order to evaluate
an estimate x, y for the time t, the ground truth position
at time t is needed. The ground truth information available
from the offline phase is limited to the positions of the
checkpoints and the corresponding time the tester was there.
On the other hand, as the signal recording was continuous, the
position estimates will have timestamps that chronologically
lay between the timestamps of two consecutive checkpoints.
In order to infer the true position of the user at a time
between two consecutive checkpoints, we have proposed two
interpolation approaches [3], which are presented bellow.

1) Interpolation per estimation update: This first solution is
the most intuitive aproach, which is to calculate an interpolated

ground truth point in the path, at the time that every new
position estimate was received. In order to do this, every time
the algorithm processes a position estimation update, it checks
its timestamp, and calculates the corresponding interpolated
point in the ground truth path for this timestamp. For example,
assume that a tester was at checkpoint A at time tA = 0 and
at checkpoint B at time tB = 10. If he receives a position
estimate at time t = 1, his ground truth position is inferred by
linear interpolation, and is assumed to be at the 10% of the
distance of the linear segment linking A to B.

This approach is useful for evaluating each position estimate
individually, and checking if the logic of the algorithm that
calculates the position estimates is accurate. On the other hand,
there is a drawback in this technique, in the case that a position
provider is updating the position estimations with a very low
frequency. In those cases, only a few points will be taken into
account for the statistical analysis. A big time lapse between
consecutive position estimates can significantly deteriorate the
perceived utility for the user, who will have the feeling that
the estimations are lagging, and thus, the estimates will not
be representative for the whole path. For example, assume a
scenario where a tester starts recording a path which is one
kilometre long, and he receives only two position estimates,
one at very the beginning and another one at the very end of
the path, both of them being very accurate estimates. Using
this method, the evaluation will later conclude that the position
provider is very accurate, despite the fact that during the whole
path the latest position estimate was the first one, placing the
user at the beginning of the path. With this motivation, we
proceed by discussing the second interpolation method.

2) Periodical interpolation: In order to better evaluate the
end user’s perception of the positioning provider, a different
interpolation method is proposed. In this case, the tester
will choose a fixed time interval, the period Ti. Then, the
system creates an interpolated ground truth point in the path
periodically every Ti time units (0, Ti, 2Ti, 3Ti,. . . ). These
points will be compared to the most recent position estimation
received at the corresponding timestamp. In this way, we
have a periodical evaluation of how close the estimation that
would appear on the user’s screen is to the true position. The
shortest the time interval Ti is, the more representative of the
continuous user experience the evaluation will be, increasing
though proportionally the processing time. Let Tp be the
expected period with which the position provider offers its
position estimates. Thus, selecting a Ti � Tp is recommended.
This method copes with the limitation of the first algorithm,
as it very frequently compares the position of the tester with
the estimates.

D. Evaluation

After the interpolation part, pairs of ground truth positions
(xg, yg) and position estimates (xe, ye) will have been created,
regardless of which interpolation method was selected. With
this information, the evaluation of the positioning algorithm
can take place. The most popular way of evaluating positioning
systems is by utilizing the 2D euclidean distance error de



(Equation 1), and the relative statistics that can be inferred
based on it.

de =
√
(xg − xe)2 + (yg − ye)2 (1)

It is common in evaluating positioning systems to present
the Cumulative Distribution Function (CDF) of the error, and
report basic statistical metrics like:

• the mean
• the median
• the 75th percentile
• the standard deviation
All these metrics can be easily calculated from the recorded

data. According to the kind of information that are included
in a position estimate, other metrics can be also added. For
example, if the position estimate and the corresponding ground
truth include extra information like: room, floor, building, etc.,
this allows an estimation of room accuracy, floor accuracy, and
building accuracy as a ratio of correct detection. Furthermore,
other metrics regarding the smoothness of the estimated path,
based on the full sequence of position estimates of a moving
tester (as discussed in [3],[16]) could also be used. Potential
metrics that may be used have been extensively discussed in
relevant studies [7],[16].

The tester can use the metric of his choice in order to
evaluate the performance of the positioning SUTs, according
to his needs. The key point of the evaluation with the proposed
method is that the results of different algorithms, or different
tunings of the same algorithm, can be consistently compared
as they are produced by the same raw data recordings.

E. Tuning and optimization

The tuning of the positioning algorithm can be done either
manually, by a person that is experienced in the particular-
ities of the positioning algorithm, or automatically by using
optimization techniques. The logic of the tuning procedure is
presented in Figure 2.

Initially, the offline positioning module gets as input the
recorded raw signals with their timestamp (s, t), and based
on some setting P of its algorithm’s parameters, the module
produces its outcome: a list of position estimates with their
corresponding timestamp (xe, ye, te). Then, by comparing the
estimates to the ground truth (xg, yg, tg), the tester can char-
acterise the performance of the setting P , using a statistical
metric f(P ) (e.g. mean error, median error, etc.) that evaluates
the outcome of the estimation. This procedure can be repeated
for several parameter settings P , obtaining an evaluation for
each of them, in search of the optimal one P ∗.

P ∗ = argmin
P

f(P ) (2)

Without the possibility of running the positioning offline
while having the spatio-temporal ground truth information, the
tuning of a positioning system can become a very tedious task.
The tester would need to repeatedly traverse the environment
with an online positioning application. The performance of

Fig. 2. The workflow for the optimization of the parameter tuning P that
determines the positioning algorithm’s performance.

the online positioning algorithm should be evaluated for many
candidate parameter settings. In that case, one formal solution
would be to repeat this procedure many times, and to record
every time the position estimates, while also gathering ground
truth information. The complexity of this task can increase ex-
ponentially with the number of parameters, due to the possible
combinations. Furthermore, the environmental conditions can
change among the different recordings, introducing a potential
bias in the selection of the optimal setting. A less formal,
but undeniably existing method in practical deployments, is
the approach of testing-and-setting with visual evaluation, in
which an experienced engineer tries empirically several pa-
rameter settings, evaluating visually, in real time, the position
estimations. The sketchiness of this method is evident, but due
to lack of formal evaluation and tuning methodologies, it is
sometimes met.

With the proposed method, the search for the optimal setting
P ∗, can be done offsite either manually or automatically.

Manual parameter tuning: In the manual approach, the
tester can run the offline algorithms, trying several candidate
settings, one by one. For each setting, all the evaluation metrics
characterising the performance of the estimation (as discussed
in Section III-D) can be calculated. Also, the tester can
visualize the estimated path in order to obtain a visual feeling,
similar to the one a user would have while using the system.
In this way, a tester can find the most appropriate tuning for a
specific deployment. Moreover, evaluating without any effort
several parameter settings, may offer to the tester an insight
of the practical effect of each parameter to the algorithm. A
thorough analysis like this, may enrich the intuition of the
tester concerning the algorithm under test or even inspire him
about how to improve the algorithm itself.



Automatic parameter optimization: The procedure of the
automatic optimization approach is straightforward. An op-
timization algorithm that runs offline, tries to solve the op-
timization problem defined in Equation 2. The tester needs
to choose four elements: (i) the recorded data over which
the optimization will take place, (ii) the evaluation metric
f(P ) (the objective function, as mentioned in the optimization
terminology), (iii) the optimization algorithm, and (iv) the
search space. The elements (i) and (ii) that concern the
recorded data and the evaluation metric, have been discussed
earlier in this work. The optimization algorithm (iii) can be
chosen by the tester according to the problem’s characteristics.
For example, a full search algorithm would evaluate all valid
candidate solutions P , in order to provide the optimal one.
This approach though is computationally expensive. Therefore,
heuristic optimization algorithms could be useful in case of
significant computational complexity. The search space (iv) is
the area of all valid values of the parameter tuning P , in the
context of the optimization problem. Each parameter of the
algorithm that needs to be properly tuned can be one of the
dimensions of the multidimensional search space. The set of
valid values for each parameter/dimension should be defined.
The search space will have as many dimensions, as the number
of the parameters to be optimized.

IV. IMPLEMENTATION

In this section, we present the software tools which allow the
execution of the presented workflow. Firstly, we introduce the
mobile application GpmLab, with which we perform the raw
data recording along with the ground truth gathering. An early
version of this application, without the raw data recording
option, is also discussed here [3]. Furthermore, we present
the GpmStudio platform, which runs the offline positioning,
and offers evaluation and tuning capabilities. Both GpmLab
and GpmStudio tools assist the main positioning framework
of our team, the Global Positioning Module (GPM) [17].

A. GpmLab: Recording application

As it has been explained during the presentation of the
method, the recording procedure has one prerequisite, that is
the definition of the path to be followed by the tester. This
path consists of a list of positions, that will be followed one
after the other, and will serve as checkpoints for the tester.
The minimum required fields for a checkpoint are the 2D
coordinates of its position. Apart from these, the checkpoint
can be enriched by adding other fields that describe with
more detail a position, such as altitude, floor, room, etc. This
predefined path is the only input required by the GpmLab
application. An example of a predefined path is shown in
Figure 3.

Before proceeding to the recording, the tester should clearly
mark in the physical world the predefined path with clear
landmarks or added signs. If it is not possible to precisely
determine the checkpoints’ positions with landmarks, the tester
should measure the distances in the reference maps and place

Fig. 3. An example of a predefined path.

Fig. 4. The two main screens of the recording application GpmLab.

in the physical world signs for every checkpoint, such as
stickers on the ground with clear numbered labels.

The GpmLab application has a very simple and straightfor-
ward interface with two simple screens (Figure 4). Initially, the
user has to select the kind of signal readings that he wishes
to record, such as Bluetooth, Ultrasound, WiFi, sensor data,
etc., as seen in the left screen of Figure 4. Apart from the raw
data, recording the estimations provided by online positioning
algorithms is also possible. It is noted though that in the con-
text of this work, the online positioning does not participate in
the proposed methodology. As mentioned earlier, recording the
estimations of the online position providers could potentially



be useful for verifying the consistency between the online and
the offline providers. After selecting the information to be
recorded, by pressing start, the second screen appears (right
side of Figure 4), which facilitates the synchronisation of the
the raw data recording with the ground truth gathering. In this
screen there is a single big button indicating the number of
the next checkpoint to be reached.

In order to start recording the data, the tester must be placed
over the first checkpoint. Then, he should indicate it to the
application by clicking the unique button of the interface and
start walking towards the second checkpoint. The system logs
the time the user began the path and starts recording the
raw signals of all selected sources, marking them with the
timestamp of each reception. The application will continuously
log these data throughout the whole path, and not only at the
checkpoints. Every time the tester steps over a checkpoint,
he should indicate it again by pressing the unique button (on
which the number of the checkpoint will be indicated), in order
to mark the checkpoint with a timestamp, until he reaches
the end of the path. At the moment of arriving at the last
checkpoint, the application will stop gathering information.

B. GpmStudio: Offline evaluation and tunning platform

The GpmStudio platform, is an offline positioning tool
suite, that utilizes the recordings obtained by the application
GpmLab. The interface of GpmStudio is shown in Figure 5.

Fig. 5. The interface of the GpmStudio tool suite.

On the left panel, there is a menu where all available
recordings are listed in a structured way. The tester can
select the recording which he wishes to process. According
to the source type of the recorded raw data, the corresponding
offline position providers that can utilize these data are used,
running their offline positioning algorithms with their default
parameter settings. At the same time, the evaluation of the
performance of each provider is done, as the spatio-temporal
ground truth information for each recording is available. The
default interpolation method is the interpolation per estimation
update (presented in Section III-C1), though the user can
choose the desired one.

The results of the evaluations are presented in the big
central panel of the interface. The evaluation of each position
provider is included in a box, highlighting the main statistical
metrics of the error (mean, standard deviation, 25th, 50th and
75th percentile). Moreover, links to the visualization of the
estimated path on a map (Figure 6), and plotting options of
the cumulative distribution function of the estimation’s error
(Figure 7) are offered.

Fig. 6. The visualisation of an estimated path, produced by the offline
positioning functionality of the GpmStudio.

Fig. 7. The CDF of the positioning error with two different parameter
tunings, produced by GpmStudio.

The presented scenario intends to exemplify the features of
the evaluation platform. For clarity, we specify that a broad
area (120 * 40 m) of an underground parking was used as the
test environment (left half part of Figures 3 and 6). In this area,



40 BLE beacons were placed at a rhombus grid pattern, and
a filtered weighted centroid algorithm was used [18]. As ex-
plained in Section III-B, the distance between the checkpoints
is a designer’s choice. In this example, the distance between
two consecutive checkpoints is approximately 8-10m.

Fig. 8. A parameter selection window of the GpmStudio tool suite.

1) Manual parameter tuning: So far, the evaluating capa-
bilities of GpmStudio platform have been presented. The main
power of this platform though lays on its tuning features. The
tester who has an insight of the system under test, is offered the
possibility to adjust all tunable parameters of each positioning
algorithm, re-evaluate each time, and compare the change in
performance. This difference in performance can be evaluated
by comparing the statistical metrics, comparing the respective
CDF’s, and by examining the estimated paths on a map.
Figure 7 exemplifies the difference in performance between
two different parameter settings of the same algorithm, while
in Figure 5 the corresponding statistical metrics are reported.

In Figure 8, an example of a parameter selection window
that is offered to the tester is shown. Using a tool like this,
the designer (or the tester) of a positioning algorithm, has the
possibility of testing the immediate impact of each parameter
on his algorithm’s performance.

This tuning option has proven to significantly facilitate the
deployment procedure for our team. Following this method-
ology in cases where we had a new deployment at a new
environment, has simplified the task of tuning the positioning
system. An experienced person was able to quickly tune the
algorithm, adjusting its parameters accordingly.

2) Automatic parameter optimization: The GpmStudio tool
suite contains a module for automatic parameter optimization.
The goal of this module is to find those parameter settings
that optimize the performance of positioning algorithms, over
the recorded data. To proceed with the optimization, the tester
needs to choose four elements:

i. the recorded data
ii. the objective function f(P )

iii. the optimization algorithm
iv. the search space

The user can select (i) the recorded data of the path that
he wishes to process, selecting from the available recorded
files. The selection of (ii) the objective function and (iii) the

optimization algorithm is done by choosing from a list of
available options. Defining (iv) the search space is the most
delicate action to be performed. The tester should select the
dimensions of the search space. Each parameter chosen to be
included in the optimization problem, is one of the dimensions
of the search space. For each dimension, the tester needs to
define its set of valid values. Assuming numerical parameters,
the tester should define the minimum and maximum value of
the parameter, as well the granularity of the search, that is the
distance between two consecutive values of the parameter.

In Figure 9, an exemplification of the form of an optimiza-
tion problem is given. The search space of this problem has
two dimensions, and the objective function is the mean error.
The first parameter is the number of the closest access points
used for ranging methods. The selected range of values is
[1, 10], with a step of 1 which is an intuitive selection for an
integer parameter. The second parameter is the number of the
latest RSSI receptions from each access point that are used in
the calculations (the memory size of a list), which similarly
has a range of valid values [1, 10], with a step of 1. The best
value of the objective function (5.7 meters) is achieved at the
point corresponding to 4 access points, and to a memory size
of 2.

Fig. 9. Mean positional error for 100 combinations of parameter settings,
exemplifying the perspective of an optimization problem.

Evidently, the problem presented above is a simple case,
with a very limited search space. A full search algorithm can
quickly evaluate all the points of the search space (100 points
in this case), and produce the data for the plot of Figure 9.
For practical needs of our group, the full search algorithm has
been used, providing results in most cases within a time-frame
of a few minutes, or in rare occasions where many parameters
were used, a few hours.

The complexity of the problem increases, as more dimen-
sions are added, or with a high granularity of non integer
parameters. By imagining a hybrid system, utilizing infor-
mation from many sources, that each has several parameters,
while adding also filtering or other processes with their own
parameters, it becomes evident how enormous the search space
can become. For cases like this, meta-heuristic algorithms can
be useful. When the search of the whole search space is not
possible, local minima could provide a near optimal solution.
In this context, the hill climbing algorithm (which is a local
search method) has been used in this optimization module.



The hill climbing algorithm requires a starting point in the
search space. Naturally, the default values of all parameters
are used to define the starting point. The intuition behind this
selection is that a local minimum close the default values is
more likely to be near-optimal, than other local minima close
to a random starting point in the search space. Nevertheless,
the tester has the freedom to define the starting point.

The outcome of the optimization is a list with the best
solutions, sorted by their objective value. Each solution, is
a point in the search space, thus it is a set of values for the
parameters that were chosen to participate in the optimization.
Since many points in the search space might have very similar
evaluation scores, the tester can observe the values of the
parameters of each point among the best ones, and select.
Selecting blindly the parameter setting that gives the best
evaluation score, based on a single recording, might be quite
misleading, as there is the danger of overfitting. A single
recording might contain particularities that do not reflect all
use cases. Factors that can play a role are: the speed of the
tester while he was recording the path, the noise level of
the environment during the recording, the device used, the
chosen path (which parts of the area of the deployment the
path covers and how equally it covers them), etc. To address
these issues up to a certain extent, we are currently designing
a multi-objective optimization approach, that will allow the
combined usage of several recordings. This multi-objective
optimization approach is further discussed in the future work
section (Section VI).

V. USAGE OVERVIEW AND DISCUSSION

In this work, we presented a straightforward methodology
for evaluating and tuning positioning systems. The methodol-
ogy includes a dynamic way of recording the ground truth
information and the received raw signals. The subsequent
offline phase offers the possibility of tuning the positioning
algorithm in order to improve the system’s performance. The
tuning can take place either manually by an expert, or in
an automatic way, by an optimization module of the offline
evaluation platform.

The proposed methodology has several applications. A usual
scenario that a positioning expert has to face is deploying at
a new environment, in which the need to calibrate the posi-
tioning algorithm appears. A simple approach is using a test-
and-set method. With this first approach, for every different
tuning, the tester has to revisit the deployment area, and either
visually evaluate the performance or actually record each time
the position estimates and the ground truth. This tedious task is
completely overcome with the proposed methodology. In this
way, the time needed at the deployment area is minimized.
Also, the consistency of the test with different parameter
settings is guaranteed, as the test utilises the same data.

Moreover, each recording of a path is an addition enriching
the bank of collected data. Increasing the number of collected
recorded paths, offers the possibility of making consistent
comparisons through time, over a variety of environments.

The possibility of crowd-sourcing recorded paths, creates the
perspective of a testbed based on real data.

Furthermore, having recorded all the data needed for an of-
fline positioning algorithm, by following a precisely described
methodology, can significantly facilitate the reproducibility of
experiments for indoor positioning publications. Making the
recorded data publicly available (raw data and ground truth),
and mentioning the exact methodology of collecting these data,
removes any ambiguity over the presented experiments of a
publication. In this way, issues such as the ones presented
in [1], and discussed earlier in this work, can be efficiently
overcome. As emphasized at the published conclusions from
the IPSN 2014 competition [5], in order to ensure that all
systems are evaluated under identical environmental conditions
(i.e., number of people in the room, interference etc.), all sys-
tems should be simultaneously evaluated at a given evaluation
point. Generally, using results of another work as a baseline,
requires a consistent comparison, with similar conditions.
Using the same recorded data, guarantees the consistency of
the comparison.

VI. FUTURE DIRECTIONS

The main next direction of this work is the improvement
of the optimization module of the offline evaluation platform,
which provides tuning suggestions. This next step, consists
of introducing the possibility of using multi-objective op-
timization techniques. Multi-objective optimization handles
mathematical optimization problems involving more than one
objective function to be optimized simultaneously. This multi-
tude of objectives, could serve different kinds of multiplicities.

It is generally accepted [5] that it is very hard to capture the
effectiveness of an indoor localization algorithm with a single
metric. Thus, a first kind of multiplicity is the use of several
evaluation metrics, as different objectives to be satisfied. This
approach will provide a more complete evaluation of the
performance of systems under test. Using a unique metric
might be not representative of a system’s performance, and
could be unfair when used for comparisons. A more holistic
evaluation would be an appealing field of research.

Multi-objective optimization could also be used to tackle
another issue that was discussed in this work: the risk of
overfitting lurks when selecting parameters based on a single
recording. Combining several recordings (with each recording
being another objective) at the same deployment could min-
imize this danger. These recordings could concern the same
or different predefined paths, different speeds of the tester,
different devices, and so on, or simply repeated recordings
with the same characteristics, to minimize the effects of
punctual issues in a single recording. Extracting an estimation
about the optimal tuning of the algorithm, by utilizing such
a variety of inputs would strengthen the robustness of the
parameter setting suggestion.

Moreover, apart from the goal of fine-tuning a system for a
specific deployment, other goals could be served by a multi-
objective optimization approach. As a collection of recordings
gets enriched with data from several environments, it earns



in variety, and can be used as a database for finding the
optimal default setting of a system. If requested to provide
a positioning system which ‘will work everywhere’, without
requiring any calibration, what’s the best way that the provider
of this solution can test if the goal is achieved? Evaluating
the system using a big database, containing recordings from
a plethora of deployments could be very useful. Therefore,
multi-objective optimization could provide tuning suggestions
so that the system manages a good performance in a multitude
of environments.

It is clear that the possibility of crowd-sourcing recorded
paths, creates the perspective of a testbed based on real data.
We intend to investigate this perspective. In this direction,
strictly defining the procedures followed and the format used
for storing the data becomes an absolute necessity. This task
needs to take place with special caution, so that the resulting
protocol will be able to serve as many techniques, technologies
and evaluation objectives as possible.

Lastly, there are some interesting additional tests that were
highlighted by the anonymous reviewers of this work, which
we are willing to conduct in the future. An interesting test is
to characterize the performance of recordings with different
densities of checkpoints, in order to experimentally observe
and characterize the impact of the checkpoint density to the
evaluation of a SUT. Additionally, by evaluating several posi-
tioning technologies that have diverse characteristics (indoor
or outdoor, with different frequencies of position estimations,
etc.), we could observe the results of the two interpolation
methods discussed in this work, or even compare them with
other methodologies, such as the one used at the IPIN com-
petition.
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