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Abstract—Ultrasonic motion sensors are used to obtain
occupancy information of indoor spaces. Although they provide a
high accuracy as compared to other sensors, like Passive InfraRed
(PIR), they require a higher power consumption in general.
In this paper we propose power hopping, an automatic power
optimization method that allows ultrasound motion sensors to
optimize their transmitter power level. The objective is to reduce
the overall energy consumption of these sensors. We have tested
our method using a sensor prototype, and the results show that,
depending on the sensor’s environment, a possible saving in the
transmitter power can be achieved, which can be as high as 78%.
We also derive an upper bound limit of the method’s convergence
time.

I. INTRODUCTION

In the recent years, the interest in smart buildings is con-
tinuously increasing. Such buildings rely on a wide range
of sensors that feed the smart systems with useful context
information. In this regard, occupancy sensors represent an
important input, allowing the systems to be seamlessly aware
of and responsive to the occupants’ needs, thus promoting
their comfort, health and well-being. Occupancy sensors have
a wide range of applications, from lighting control, Heating,
Ventilation, Air Conditioning (HVAC), to assisted living and
security systems. While several technologies have been de-
veloped for occupancy sensing, Passive InfraRed (PIR) and
ultrasonic motion sensors remain the most prevalent in this
respect [1].

PIR sensors are widely used to detect human presence,
by responding to a change in the temperature pattern across
the field of view of the sensor. A PIR sensor is considered
passive as it does not emit any energy itself, but rather
relies on the pattern of the received infrared radiation in the
environment [2]. Different works have suggested algorithms to
enhance the performance of PIR sensors and the processing of
their output [3], [4], [5], [6]. PIR sensors are attractive because
of their low power consumption. However, the main drawbacks
of PIR sensors are their limited accuracy, and sensitivity to
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changes in the environment (sunlight, heating effect, etc.), as
well as their limitation to work only in line-of-sight (LOS)
conditions.

Ultrasonic sensors, which are based on non-audible acoustic
signals, are another category of occupancy sensors. They can
be used as ranging sensors to detect objects in the field of view,
based on the time-of-flight (ToF) of the ultrasonic signal. Some
works [7], [8], [9] use this technique to infer the occupancy
at a specific location. The ultrasonic motion sensors, which
we address in our work, use active ultrasonic signals to sense
human motions inside an area, based on the Doppler effect
principle. These sensors are helpful to obtain fine information
about the room occupancy, the direction of movements and
speed of occupants. Example applications of these sensors are
presented in [10], [11], and [12].

Ultrasonic motion sensors are promising as they are more
sensitive and accurate than PIR ones [1]. Moreover, they
are capable of sensing moving objects in non line-of-sight
(NLOS), since the ultrasonic signals can propagate around
objects, unlike infrared radiations. Despite these advantages,
ultrasound motion sensors are sill not very popular, as it is the
case with PIR ones. The fact that they are active, as compared
to passive, makes their power consumption higher than PIR,
and thus limits their potential applications.

While many works have discussed the use of ultrasonic
sensors in occupancy sensing, the issue of power consumption
has not attracted sufficient interest. In their work, Mishra et
al. [13] try to reduce the processing power of ultrasound raging
sensors used by robots to perceive the occupancy grid. They
do so on the logic circuitry level, and show that the power
consumption can be reduced by redesigning the processing
logic circuit. However, and to the best of our knowledge, there
is no research work in the literature that focuses on reducing
the transmitter power consumption of ultrasonic sensors, as
we suggest in our work.

In this paper, we state that the required power for ultrasonic
motion sensors is not fixed, but rather it varies as a function
of the sensor’s environment. We introduce the power hopping
method as an automatic process to optimize the transmitter
power level to best fit this environment. The method aims to



reduce the power consumption of the sensor while preserving
the performance. After testing the method using a sensor
prototype, we validated that a possible saving in the transmitter
power can be achieved, which can reach up to 78% in power
reduction, depending on the sensor’s environment.

The rest of this paper is organized as follows. First, Sec-
tion II introduces some necessary details about the operation
of ultrasound motion sensors. Section III explains the concept
and algorithm of the suggested power hopping method. In
Section IV we derive an upper limit for the convergence time,
and in Section V we present the experimental evaluation of the
method. Finally, Section VI concludes the paper and presents
the future work.

II. PRELIMINARIES

Ultrasound-based motion sensors use active ultrasonic sig-
nals to detect movements of people inside a certain area, based
on the Doppler effect principle. They periodically transmit an
ultrasonic signal and observe the corresponding reflected one.
Frequency shifts in the received signal indicates the detection
of movements, whereas the signal frequency remains intact
when no movements occur.

Assuming that the transmitted signal is a sine pulse of
frequency fc and duration T , its sampled version can be
represented by a discrete time sequence x[n] of length bT/Tsc,
where Ts is the sampling frequency. Let a frame represent one
transmission/reception of the ultrasonic signal. The transmitted
signal propagates through the environment, and reflects on
obstacles and objects. Static objects (walls, furniture, etc) do
not alter the signal frequency, while moving ones (people
walking, etc) will cause some shifts in the signal frequency.
The sensing unit records the received signal y[n] for a certain
frame, and computes the magnitude {|Y [k]|} of its Discrete
Fourier Transform (DFT), which represents its frequency spec-
trum:

|Y [k]| = |F{y[n]}|k = |
N−1∑
n=0

y[n]e
−j 2π
N

nk|

for k = 0, 1, . . . , N − 1

(1)

To detect movements, the frequency spectrum of the current
frame is compared against a reference still frame. The still
frequency spectrum Ystill corresponds to the case with no
moving objects, and should be known to the system. The
difference between the two spectra reflects the frequency
shifts in the signal, and is computed by the system using the
following quantity, which we call the motion score:

motion score =
∑
k∈I

| |Y [k]| − |Ystill[k]| | (2)

where I is the ultrasound frequency band to consider around
the signal frequency fc:

I = [fc −∆f(max), fc) ∪ (fc, fc +∆f(max)] (3)

∆f(max) being the maximum Doppler shift, which is deter-
mined by the assumed maximum velocity of a person’s motion
vmax:

∆f(max) =
2vmax

c
fc (4)

where c is the speed of sound in air. The result of Equation 2
is compared with a threshold value. If it exceeds the threshold,
it can be deduced that a movement is detected, otherwise if
it is smaller than the threshold, the frequency differences can
be considered to be due to noise and thus no movements are
reported to be detected. We define the motion intensity as the
ratio of the motion score to the threshold value:

motion intensity =
motion score

threshold
(5)

In a previous work, we show how the motion detection
parameters (Ystill, threshold) can be obtained automatically
through self-calibration [14].

III. POWER HOPPING METHOD

The total power consumption of an ultrasound motion
sensor is mainly divided into signal transmission/reception and
signal processing:

Ptotal = Ptransmitter + Preceiver + Pprocessing (6)

While the power required for the receiver and signal process-
ing is independent from the sensor environment, the transmis-
sion power can be optimized to best fit a certain environment
and cut unnecessary power consumption, thus reducing the
overall power consumption of the sensing unit. The objective
of the power hopping technique is to find the optimal level of
transmitter power that the sensor can use, without jeopardizing
the performance.

A. The Best Power for Each Setting

The required transmitter power varies from one environment
to another, depending on variables like the room dimensions,
presence of obstacles, and also hardware characteristics (re-
ceiver’s sensitivity, etc.). Figure 1 shows how the installation
environment would affect the required transmitter power. For
example, if the LOS of the system is not blocked, the ultra-
sonic signal propagates easily and may need a low transmitter
power. Whereas if the LOS is obstructed, as when the system
is placed behind an obstacle or furniture, a stronger signal is
needed to propagate around such obstacles.

Let Pmax and Pmin be respectively the maximum and
minimum power levels of the system. Pmax allows the
system to work in all conditions. However, according to the
sensor’s environment, the system may still achieve the same
performance with a lower power level. Power hopping allows
the system to adapt to the optimal transmitter power Poptimal,
which is the lowest possible transmitter power that yields the
same performance. The value of Poptimal should be between
Pmax and Pmin:

Pmin ≤ Poptimal ≤ Pmax (7)



Figure 1. A different transmitter power is required in each case.

The power hopping method is supposed to take place
during the initialization phase, when the sensor is installed
in a new environment. Once the optimal power Poptimal is
found, the system switches to this new transmitter power
level. Subsequently, the system may run the power hopping
process occasionally to reflect any possible changes in the
environment.

B. Relation Between Transmitter Power and Frequency Spec-
trum

Before introducing the algorithm, it is necessary to state
the relation between the transmitter power and the frequency
spectrum of the received signal.

Statement. Let the vector Y1 be the DFT of the received
signal y1[n] that corresponds to a transmitted signal x1[n],
and assuming that:
• The sensor’s environment has a linear response
• The transmitter and receiver do not operate in their

saturation region
• The effect of the noise on the received signal is negligible

Then, if the amplitude of the transmitted signal is scaled by
a constant α such that x2[n] = αx1[n], the magnitude |Y2|
of the DFT of the corresponding received signal y2[n] is such
that

|Y2[k]| = α|Y1[k]| ∀k ∈ I

Proof. Because the sensor’s environment can be modeled by
a linear system, when the transmitted signal is scaled by some
constant α, the received signal will be also scaled by the same
factor. The Fourier transform is also linear, so the scaling
will also scale its result by the same factor, and therefore
the magnitude of the Fourier transform, which represents the
frequency spectrum of the received signal, will be scaled by
α.

Corollary. Assume that we have the still frequency spectrum
|Ystill| that corresponds to a certain transmitter power P .
Since the power of a transmitted signal x[n] of length N is

P =
1

N

N−1∑
n=0

|x[n]|2, (8)

if the amplitude of the transmitted signal x[n] is scaled by α,
then its power will be scaled by β = α2, and thus the new
corresponding still frequency spectrum |Ystill(new)| will be
equal to {α× |Ystill|} (or {

√
β × |Ystill|}).

Following a similar reasoning, the new threshold value to
be used for comparison needs also to be scaled by the same
constant α.

C. Power Hopping Algorithm

Initially, the transmitter power that is used by the system is
Pmax. The parameters of the system (|Ystill|, threshold) that
are initially used correspond to Pmax. The system then tries
to switch to a lower transmitter power Pcandidate.
Pvalid is the transmitter power level for which the sensor

works well, and is initialized to Pmax, while Pinvalid is the
transmitter power level which is too weak to detect motions
and is initialized to Pmin.

When a motion is detected inside the room, the system hops
between Pvalid and Pcandidate back and forth several times.
The number of times the system hops between two power
levels is a design choice parameter, which we call it nhops. For
Pcandidate to be considered valid, it should detect the motions
that Pvalid can detect with the same intensity, otherwise it is
considered invalid. When the system hops between Pvalid and
Pcandidate, it calculates every time the motion score:

motion score(valid) =
∑

k∈I ||Yvalid[k]| − |Ystill[k]||
motion score(candidate) =

∑
k∈I ||Ycandidate[k]|

−
√

Pcandidate/Pvalid × |Ystill[k]||
(9)

Note that in the previous equation, the new still frequency
spectrum is calculated using the reasoning of corollary III-B
(hence the square root in the equation).
Pcandidate is then considered valid, if the following holds

for each time:

motion score(valid) > threshold

and

motion score(candidate) >
√

Pcandidate/Pvalid × threshold
and

motion score(valid)
threshold

≈ motion score(candidate)√
Pcandidate/Pvalid × threshold

(10)
The new threshold value is calculated as discussed in corol-
lary III-B as well. The first condition in Equation 10 indicates
that a motion is being detected with Pvalid, the second
condition means that the motion can be also detected with
Pcandidate. The last condition requires that Pcandidate detects
the motion with the same intensity compared to Pvalid, ensur-
ing that the switch of power levels is robust. The approximate



equality, instead of full equality, is used to account for possible
noise in the signals.

When Pcandidate is found to be valid, the system switches
to this new power level and updates the parameters (|Ystill|,
threshold), otherwise it picks another candidate power level,
as the middle value between Pvalid and Pinvalid. We assume
that during the short time that this iteration takes, it is valid
to consider that a person’s movement is continuous.

The system continues the power hopping method, until the
valid power Pvalid does not change more than a certain amount
ε. At this time, the optimal power Poptimal is assumed to
be found, and the system switches to this new transmitter
power level. Algorithm 1 presents the power hopping method
in pseudo-code.

Algorithm 1 Power hopping algorithm

1: procedure POWER HOPPING
2: initialization:
3: Pvalid ← Pmax

4: Pinvalid ← Pmin

5: Pcandidate ← Pmin

6: iteration:
7: while (Pvalid−Pcandidate > ε) and (motion detected)

do
8: hop between Pvalid and Pcandidate

9: if Pcandidate is valid then
10: Ystill[k] ←

√
Pcandidate/Pvalid × Ystill[k] ∀k ∈

I
11: threshold←

√
Pcandidate/Pvalid × threshold

12: Pvalid ← Pcandidate

13: else
14: Pinvalid ← Pcandidate

15: end if
16: Pcandidate ← (Pvalid+Pinvalid)/2
17: end while
18: result:
19: Poptimal ← Pvalid

20: end procedure

D. Power Hopping Example

In this section, we illustrate an example case showing how
the power hopping method works. We consider the scenario
shown in Figure 2. First, the system is using the maximum
power Pmax to detect persons’ movements. Once it detects a
motion, it triggers the power hopping process. For the sake of
this example, we assume that the power hopping converges in
4 iterations in this particular scenario:
• Iteration 1: Pmax is a valid power level. Pmin is the

candidate power level. The system hops between Pmax

and Pmin. Pmin fails to detect motions, so the candidate
power is updated to P1 = (Pmax+Pmin)/2.

• Iteration 2: power hopping between Pmax and P1. P1

succeeds to detect motions, so it becomes the valid power
level. The new candidate power is now P2 = (P1+Pmin)/2.

• Iteration 3: power hopping between P1 and P2. P2

succeeds to detect motions, so the updates take place
similar to Iteration 2.

• Iteration 4: power hopping between P2 and P3. P3 fails to
detect motions. In this particular example, we assume that
the new candidate power is such that P2−Pcandidate < ε,
and the power hopping process terminates at this point.

Power hopping converges to P2, which is considered the
optimal power level. The system switches to this power level,
and from this moment on uses it to detect motions.

IV. CONVERGENCE TIME

The time required for the power hopping method to con-
verge, depends on several parameters. In this section, we derive
an upper limit of this time.

Let niterations be the number of iterations needed for the
system to converge. The method runs as long as the following
condition holds:

Pmax − Pmin

2niterations−1 > ε (11)

Solving for niterations yields:

niterations < 1 + log2

(
Pmax − Pmin

ε

)
(12)

which means that the maximum number of iterations for the
method to converge is:

niterations = 1 + blog2
(
Pmax − Pmin

ε

)
c (13)

The total time of the process depends on the time required for
each iteration. Assuming that the processing time after each
transmission is negligible, the time it takes for each iteration
titeration depends on the number of hops nhops from Pvalid

to Pcandidate and the time of each transmission ttransmission:

titeration = 2× nhops × ttransmission (14)

The maximum required time for the power hopping process
is:

tmax = titeration × niterations (15)

Yielding finally:

tmax = 2× nhops × ttransmission

×(1 + blog2
(
Pmax − Pmin

ε

)
c)

(16)

In our design, we choose nhops to be 3, as a middle choice
to make the switching decision robust while keeping the time
required short enough. For a transmitted signal duration of
10ms, and a desired resolution of ε = (Pmax−Pmin)/128, the
maximum convergence time would be tmax = 0.48sec



Figure 2. Power hopping example: adapting to the optimal transmitter power level.

Figure 3. Prototype of the ultrasound motion sensor used for testing.

V. EXPERIMENTAL EVALUATION

A. Prototype

In order to test the performance of the suggested power
hopping method, we implemented a prototype of an ultrasound
motion sensor. The prototype, shown in Figure 3, is composed
of a transmitter (a commodity speaker) and a receiver (a
commodity microphone) both connected to a Raspberry Pi
board [15], which acts as the control/processing unit, and
implements the described power hopping method. The trans-
mitted signal frequency used is 21kHz, and the frequency band
considered in the processing of the received signal is 20kHz-
22kHz.

B. Testing Methodology

The prototype of the sensor is fixed inside a certain area.
For a chosen maximum transmitter power Pmax, the detection
parameters (|Ystill|, threshold) are calibrated as described
in [14]. The sensor waits to detect movements before trig-
gering the power hopping process. A person walks to the
designated area, moves for few seconds and then leaves the
area. During this time, the sensor runs the power hopping
method, and switches to the optimal power level.

Aiming to cover different environments, the previous testing
process is repeated for 4 different cases, as follows:
• Case 1: The area is a large room with dimensions 6 ×

7.8m, the sensing unit is placed such that the LOS is not
obstructed.

Table I. Power saving as a result of the power hopping method

Original New Power
Case Transmit Power Transmit Power Saving

#1: large room, LOS Pmax 0.31Pmax 69%
#2: large room, NLOS Pmax 0.96Pmax 4%
#3: small room, LOS Pmax 0.22Pmax 78%
#4: small room, NLOS Pmax 0.76Pmax 24%

• Case 2: Same area of case 1, but the sensing unit is placed
behind an obstacle blocking the LOS.

• Case 3: The area is a small room with dimensions 6 ×
3.9m, LOS not obstructed.

• Case 4: Same area of case 3, with the sensing unit placed
behind an obstacle blocking the LOS.

Figure 4 illustrates the different test cases for which the power
hopping method was tested. In each case, we note the obtained
optimal power level Poptimal. Once the power hopping process
is over, and as a double check, we verified that the new
transmitter power is capable of detecting the motions in the
room as the previous power Pmax.

C. Results

The results summarized in Table I show the optimal level
of transmitter power Poptimal obtained through the power
hopping process, and also the power saving in each case.

The power hopping method aims to find the optimal
transmitter power, and to cut unnecessary transmitter power
amount. In general, we see that an important power saving in
the transmitter power can be achieved (up to 78% as in case
3). The obtained results show that the required transmitter
power varies in function of the specific environment (room
size, obstacles, etc.). A big room, compared to a small one,
requires more signal power to cover the whole area and
detect movements inside it. This explains why, under the same
settings, the system placed in a small room (case 3) requires
less power than the case of a big room (case 1), yielding more
saving in the transmitter power (78% vs 69%). On the other
hand, when the sensor is placed behind an obstacle, a higher
transmitter power is needed to propagate around the obstacle



(a) Case 1 : Large room, prototype in LOS (b) Case 2 : Large room, prototype behind obstacle

(c) Case 3 : Small room, prototype in LOS (d) Case 4 : Small room, prototype behind obstacle

Figure 4. Illustration of the different test cases

and detect movements behind it, as compared to a case with
a direct LOS. This is the reason why we notice more power
savings in cases 1 (69%) and 3 (78%), compared to cases 2
(4%) and 4 (24%) respectively. Case 2 represents an extreme
environment in terms of size and obstacles, this is why a very
little saving in the transmitter power is achieved (4%). This
shows that the full maximum power level Pmax might still be
needed in such environments.

It is worth noting that although the obtained results show
that it is possible to achieve a saving in the transmitter power in
some environments, the actual amount of power saving remain
specific for the settings of each environment, and the values
we obtained are only indicative in this regard.

VI. CONCLUSION AND FUTURE WORK

In this work, we have presented the power hopping method,
a power optimization technique for ultrasound motion sensors.
The method aims to reduce the overall power consumption of
these sensors, by cutting unnecessary transmitter power used.
The results show that a possible saving in the transmitter
power can be achieved, which can be significant or minor
depending on the environment. The power hopping method can
be very useful especially when the energy source is limited,
like when the sensor is battery-powered, so that the battery

life is extended. A future plan is to make the system run the
power hopping method occasionally, in order to validate the
obtained optimal power level in time, and reflect any potential
changes in the sensor’s environment. In this regard, we will
investigate techniques that would allow the system of detecting
major changes in the environment in order to trigger the power
hopping process automatically.
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