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Abstract
Smart sensing technologies play a key role in the core of smart systems, which form the rapidly evolving internet of things. 
In this context, buildings’ occupancy information is an important input that allows smart systems to be seamlessly aware 
of and responsive to the inhabitants, thus ensuring their comfort. Ultrasonic motion sensors are used to obtain occupancy 
information of indoor spaces. Although they provide a high accuracy as compared to other sensors, like Passive InfraRed, 
they require a higher power consumption. In this work, we propose an adaptive power switching technique, which we call 
power hopping. This technique allows ultrasound motion sensors to optimize their transmitter power level, in order to best fit 
their surrounding environment. The objective is to reduce the overall energy consumption of these sensors. We have tested 
our method using a sensor prototype, and the results show that, depending on the sensor’s environment, a possible saving in 
the transmitter power can be achieved, which reached up to 78% in our experiments. We also derive an upper bound limit 
of the method’s convergence time, and we propose an automatic sensing method to detect potential changes in the sensor’s 
environment.

Keywords  Ultrasound · Motion sensors · Power switching · Environment sensing

1  Introduction

In the recent years, the interest in smart buildings is con-
tinuously increasing. Such buildings rely on a wide range 
of sensors that feed the smart systems with useful context 
information. In this regard, occupancy sensors represent 
an important input, allowing the systems to be seamlessly 
aware of and responsive to the occupants’ needs, thus pro-
moting their comfort, health and well-being. Indoor occu-
pancy information is implied in a wide range of applica-
tions (Hammoud et al. 2016), from lighting control, Heating, 

Ventilation, Air Conditioning (HVAC), to assisted living 
and security systems. While several technologies have been 
developed for occupancy sensing, Passive InfraRed (PIR) 
and ultrasonic motion sensors remain the most prevalent in 
this respect (Teixeira et al. 2010).

PIR sensors are widely used to detect human presence, 
by responding to a change in the temperature pattern across 
the field of view of the sensor. A PIR sensor is considered 
passive as it does not emit any energy itself, but rather relies 
on the pattern of the received infrared radiation in its envi-
ronment (Guo et al. 2010). Different works have suggested 
algorithms to enhance the performance of PIR sensors and 
the processing of their output (Yin et al. 2016; Narayana 
et al. 2015; Luo et al. 2016; Kuutti et al. 2014). PIR sen-
sors are attractive because of their low power consumption. 
However, the main drawbacks of PIR sensors are their lim-
ited accuracy, and sensitivity to changes in the environment 
(sunlight, heating effect, etc.), as well as their limitation to 
work only in line-of-sight (LOS) conditions.

Ultrasonic sensors, which are based on non-audible 
acoustic signals, are another category of occupancy 
sensors. On one side, they can be used as ranging sen-
sors to detect objects in the field of view, based on the 
time-of-f light (ToF) of the ultrasonic signal. Some 
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works (Mokhtari et al. 2017; Jaramillo and Linnartz 2015; 
Gonzalez et al. 2014) use this technique to infer the occu-
pancy at a specific location. Ultrasound can also be used 
to detect still occupants.

On the other side, the ultrasonic motion sensors, which 
we address in our work, use active ultrasonic signals to sense 
human motions inside an area, based on the Doppler effect 
principle. These sensors are helpful to obtain fine informa-
tion about the room occupancy, the direction of movements 
and speed of occupants. Example applications of these sen-
sors are presented in Caicedo and Pandharipande (2012); Raj 
et al. (2012) and Mehmood et al. (2010).

Ultrasonic motion sensors are promising as they are more 
sensitive and accurate than PIR ones (Teixeira et al. 2010). 
Moreover, they are capable of sensing moving objects in non 
line-of-sight (NLOS), since the ultrasonic signals can propa-
gate around objects, unlike infrared radiations (Hammoud 
et al. 2017a). Despite these advantages, ultrasound motion 
sensors are still not very popular, as it is the case with PIR 
ones. The fact that they are active, as compared to passive, 
makes their power consumption higher than PIR, and thus 
limits their potential applications.

Power consumption of sensors is a critical issue in the 
design of smart systems and sensor networks (Shnayder 
et al. 2004; Akyildiz et al. 2002; Pottie and Kaiser 2000). 
Therefore, it is important to reduce the individual energy 
consumption of sensors, especially when the energy source 
is limited (case of battery-based for example) (Lindsey and 
Raghavendra 2002). While many works have discussed the 
use of ultrasonic sensors in occupancy sensing, the issue of 
power consumption has not attracted sufficient interest. In 
their work, Mishra et al. (2009) try to reduce the processing 
power of ultrasound raging sensors used by robots to per-
ceive the occupancy grid. They do so on the logic circuitry 
level, and show that the power consumption can be reduced 
by redesigning the processing logic circuit. However, and 
to the best of our knowledge, there is no research work in 
the literature that focuses on reducing the transmitter power 
consumption of ultrasonic sensors, as we suggest in our 
work.

In this paper, which extends our previous work (Hammoud 
et al. 2017b), we state that the required power for ultrasonic 
motion sensors is not fixed, but it rather varies as a function 
of the sensor’s environment. We introduce the power hopping 
method as an automatic process to optimize the transmitter 
power level to best fit this environment. The method aims to 
reduce the power consumption of the sensor while preserv-
ing the performance. After testing the method using a sensor 
prototype, we validated that a possible saving in the transmit-
ter power can be achieved depending on the sensor’s envi-
ronment, which reached up to 78% of power reduction in our 
experiments. Additionally, we derive an upper bound limit of 

the method’s convergence time, and we present an automatic 
sensing method to detect potential changes in the environment.

The rest of this paper is organized as follows. First, Sect. 2 
introduces some necessary details about the operation of ultra-
sound motion sensors. Sect. 3 explains the concept and algo-
rithm of the suggested power hopping method. In Sect. 4 we 
derive an upper limit for the convergence time, and in Sect. 5 
we present our technique to automatically detect changes in the 
sensor’s environment. The experimental evaluation and results 
are shown in Sects. 6, and 7 presents the possible limitations 
of the proposed method. Finally, Sect. 8 concludes the paper.

2 � Preliminaries

Ultrasound-based motion sensors use active ultrasonic signals 
to detect movements of people inside a certain area, based 
on the Doppler effect principle. They periodically transmit an 
ultrasonic signal and observe the corresponding reflected one. 
Frequency shifts in the received signal indicates the detection 
of movements, whereas the signal frequency remains intact 
when no movements occur.

Assuming that the transmitted signal is a sine pulse of 
frequency fc and duration T, its sampled version can be rep-
resented by a discrete time sequence x[n] of length ⌊T∕Ts⌋ , 
where Ts is the sampling frequency. Let a frame represent one 
transmission/reception of the ultrasonic signal. The transmit-
ted signal propagates through the environment, and reflects 
on obstacles and objects. Static objects (walls, furniture, etc) 
do not alter the signal frequency, while moving ones (people 
walking, etc) will cause some shifts in the signal frequency. 
The sensing unit records the received signal y[n] for a certain 
frame, and computes the magnitude {|Y[k]|} of its Discrete 
Fourier Transform (DFT), which represents its frequency 
spectrum:

To detect movements, the frequency spectrum of the cur-
rent frame is compared against a reference still frame. The 
still frequency spectrum Ystill corresponds to the case with 
no moving objects, and should be known to the system. The 
difference between the two spectra reflects the frequency 
shifts in the signal, and is computed by the system using the 
following quantity, which we call the motion score:

where I is the ultrasound frequency band to consider around 
the signal frequency fc:

(1)
|Y[k]| = |{y[n]}|k =

|||||

N−1∑
n=0

y[n]e−j
2�

N
nk
|||||

for k = 0, 1,… ,N − 1

(2)motion score =
∑
k∈I

||Y[k]| − |Ystill[k]||

(3)I = [fc − Δf (max), fc) ∪ (fc, fc + Δf (max)]
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Δf (max) being the maximum Doppler shift, which is deter-
mined by the assumed maximum velocity of a person’s 
motion vmax:

where c is the speed of sound in air. The result of Eq. 2 is 
compared with a threshold value. If it exceeds the threshold, 
it can be deduced that a movement is detected, otherwise if 
it is smaller than the threshold, the frequency differences 
can be considered due to noise and thus no movements are 
reported to be detected. We define the motion intensity as the 
ratio of the motion score to the threshold value:

In a previous work, we showed how the motion detection 
parameters ( Ystill , threshold) can be obtained automatically 
through self-calibration (Hammoud et al. 2017c).

3 � Power hopping method

The total power consumption of an ultrasound motion sen-
sor is mainly divided into signal transmission/reception and 
signal processing:

While the power required for the receiver and signal pro-
cessing is independent from the sensor environment, the 
transmission power can be optimized to best fit a certain 
environment and cut unnecessary power consumption, thus 
reducing the overall power consumption of the sensing unit. 
The objective of the power hopping technique is to find the 
optimal level of transmitter power that the sensor can use, 
without jeopardizing the performance.

3.1 � The best power for each setting

The required transmitter power varies from one environment 
to another, depending on variables like the room dimensions, 
presence of obstacles, and also hardware characteristics 
(receiver’s sensitivity, etc.). Figure 1 shows how the instal-
lation environment would affect the required transmitter 
power. For example, if the LOS of the system is not blocked, 
the ultrasonic signal propagates easily and may need a low 
transmitter power. Whereas if the LOS is obstructed, as 
when the system is placed behind an obstacle or furniture, a 
stronger signal is needed to propagate around such obstacles.

Let Pmax and Pmin be respectively the maximum and mini-
mum power levels of the system. Pmax allows the system 
to work in all conditions. However, according to the sen-
sor’s environment, the system may still achieve the same 

(4)Δf (max) =
2vmax

c
fc

(5)motion intensity =
motion score

threshold

(6)Ptotal = Ptransmitter + Preceiver + Pprocessing

performance with a lower power level. Power hopping 
allows the system to adapt to the optimal transmitter power 
Poptimal , which is the lowest possible transmitter power that 
yields the same performance as Pmax . The value of Poptimal 
should lie between Pmax and Pmin:

The power hopping method is supposed to take place dur-
ing the initialization phase, when the sensor is installed 
in a new environment. Once the optimal power Poptimal is 
found, the system switches to this new transmitter power 
level. Subsequently, the system may run the power hopping 
process occasionally to reflect any possible changes in the 
environment.

3.2 � Relation between transmitter power 
and frequency spectrum

Before introducing the algorithm, it is necessary to state the 
relation between the transmitter power and the frequency 
spectrum of the received signal.

Statement. Let the vector Y1 be the DFT of the received 
signal y1[n] that corresponds to a transmitted signal x1[n] , 
and assuming that:

•	 The sensor’s environment has a linear response
•	 The transmitter and receiver do not operate in their satu-

ration region
•	 The effect of the noise on the received signal is negligible

Then, if the amplitude of the transmitted signal is scaled by a 
constant � such that x2[n] = �x1[n] , the magnitude |Y2| of the 
DFT of the corresponding received signal y2[n] is such that

(7)Pmin ≤ Poptimal ≤ Pmax

Fig. 1   A different transmitter power is required in each case
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Proof  Because the sensor’s environment can be modeled 
by a linear system, when the transmitted signal is scaled 
by some constant � , the received signal will be also scaled 
by the same factor. The Fourier transform is also linear, so 
the scaling will also scale its result by the same factor, and 
therefore the magnitude of the Fourier transform, which rep-
resents the frequency spectrum of the received signal, will 
be scaled by � . 	�  □

Corollary.  Assume that we have the still frequency spec-
trum |Ystill| that corresponds to a certain transmitter power 
P. Since the power of a transmitted signal x[n] of length N is

if the amplitude of the transmitted signal x[n] is scaled by 
� , then its power will be scaled by � = �2 , and thus the new 
corresponding still frequency spectrum |Ystill(new)| will be 
equal to {� × |Ystill|} (or {

√
� × �Ystill�}).

Following a similar reasoning, the new threshold value 
to be used for comparison needs also to be scaled by the 
same constant �.

3.3 � Power hopping algorithm

Initially, the transmitter power that is used by the system is 
Pmax . The parameters of the system ( |Ystill| , threshold) that 
are initially used correspond to Pmax . The system then tries 
to switch to a lower transmitter power Pcandidate.

Pvalid is the transmitter power level for which the sensor 
works well, and is initialized to Pmax , while Pinvalid is the 
transmitter power level which is too weak to detect motions 
and is initialized to Pmin.

When a motion is detected inside the room, the system 
hops between Pvalid and Pcandidate back and forth several 
times. For Pcandidate to become valid, it should detect the 
motions that Pvalid can detect with the same intensity every 
time, otherwise it is considered invalid. The number of times 
the system hops between the two power levels is a design 
choice parameter, which we call it nhops . Setting the value of 
this parameter is a trade-off: on one hand, the higher nhops 
is, the more robust the switching between the two power 
levels is, but also the convergence time of the power hop-
ping method is longer. On the other hand if nhops is low, the 
method converges faster, but the switching is less robust. 

|Y2[k]| = �|Y1[k]| ∀k ∈ I

(8)P =
1

N

N−1∑
n=0

|x[n]|2,

In our design, we choose nhops to be 3, which we empiri-
cally found to be a good middle choice to keep the switching 
robust while keeping the convergence time short enough.

When the system hops between Pvalid and Pcandidate , it 
calculates every time the motion score:

Note that in Eq. 9, the new still frequency spectrum is calcu-
lated using the reasoning of Corollary 3.2 (hence the square 
root in the equation).

Pcandidate is then considered valid, if the following holds 
for each time:

The new threshold value is calculated as discussed in Corol-
lary 3.2 as well. The first condition in Eq. 10 indicates that 
a motion is being detected with Pvalid , the second condition 
means that the motion can be also detected with Pcandidate . 
The last condition requires that Pcandidate detects the motion 
with the same intensity compared to Pvalid , ensuring that the 
switch of power levels is robust. The approximate equality, 
instead of full equality, is used to account for possible noise 
in the signals.

When Pcandidate is found to be valid, the system switches 
to this new power level and updates the parameters ( |Ystill| , 
threshold), otherwise it picks another candidate power 
level, as the middle value between Pvalid and Pinvalid , simi-
lar to a binary search. We assume that during the short 
time that this iteration takes, it is valid to consider that a 
person’s movement is continuous.

The system continues the power hopping method, until 
the valid power Pvalid does not change more than a cer-
tain amount � . At this time, the optimal power Poptimal is 
assumed to be found, and the system switches to this new 
transmitter power level. Algorithm 1 presents the power 
hopping method in pseudo-code.

(9)

motion score(valid) =
�
k∈I

��Yvalid[k]� − �Ystill[k]��

motion score(candidate) =
�
k∈I

��Ycandidate[k]�

−
√
Pcandidate∕Pvalid ×

��Ystill [k]‖

(10)

⎧⎪⎪⎨⎪⎪⎩

motion score(valid) > threshold

and

motion score(candidate) >
√
Pcandidate∕Pvalid × threshold

and
motion score(valid)

threshold
≈

motion score(candidate)√
PcandidatePvalid×threshold
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3.4 � Power hopping example

In this section, we illustrate an example case showing how 
the power hopping method works. We consider the scenario 
shown in Fig. 2. First, the system is using the maximum 
power Pmax to detect persons’ movements. Once it detects a 
motion, it triggers the power hopping process. For the sake 
of this example, we assume that the power hopping con-
verges in 4 iterations in this particular scenario:

•	 Iteration 1: Pmax is a valid power level. Pmin is the can-
didate power level. The system hops between Pmax and 
Pmin . Pmin fails to detect motions, so the candidate power 
is updated to P1 =

(
Pmax + Pmin

)
∕2.

•	 Iteration 2: power hopping between Pmax and P1 . P1 succeeds 
to detect motions , so it becomes the valid power level. The 
new candidate power is now P2 =

(
P1 + Pmin

)
∕2.

•	 Iteration 3: power hopping between P1 and P2 . P2 succeeds 
to detect motions, so the updates take place similar to Itera-
tion 2.

•	 Iteration 4: power hopping between P2 and P3 . P3 fails to 
detect motions. In this particular example, we assume that 
the new candidate power is such that P2 − Pcandidate < 𝜀 , 
and the power hopping process terminates at this point.

 Power hopping converges to P2 , which is considered the opti-
mal power level. The system switches to this power level, and 
from this moment on uses it to detect motions.

4 � Convergence time

The time required for the power hopping method to converge, 
depends on several parameters. In this section, we derive an 
upper limit of this time.

Let niterations be the number of iterations needed for the sys-
tem to converge. The method runs as long as the following 
condition holds:

Solving for niterations yields:

which means that the maximum number of iterations for the 
method to converge is:

(11)
Pmax − Pmin

2niterations−1
> 𝜀

(12)niterations < 1 + log[2]
Pmax − Pmin

𝜀

(13)niterations = 1 + ⌊log[2]Pmax − Pmin

�
⌋

Fig. 2   Power hopping example: adapting to the optimal transmitter power level
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The total time of the process depends on the time required 
for each iteration. Assuming that the processing time after 
each transmission is negligible, the time it takes for each 
iteration titeration depends on the number of hops nhops from 
Pvalid to Pcandidate and the time of each transmission ttransmission
:

The maximum required time for the power hopping process 
is:

Yielding finally:

With nhops = 3 , for a transmitted signal duration of 10 ms, 
and a desired resolution of � = (Pmax − Pmin)∕128 , the maxi-
mum convergence time would be tmax = 0.48 s.

5 � Automatic detection of environment 
changes

5.1 � Objective

The proposed power hopping method finds the optimal 
transmit power for a given environment, as previously 
described. However, as indoor environments are likely to 
be changed with time (motion sensor smoved to a new place, 
furniture moved around, obstacle abundance changed, etc.), 
this optimal transmit power might become invalid, and needs 
to be recalculated for every new setting. Therefore, we have 
designed an automatic technique whose objective is to sense 
whether the surrounding environment has changed, and to 
re-trigger the power hopping process. As shown in the flow 
chart of Fig. 3, the motion sensor checks periodically for 
changes in the environment, and runs the power hopping 
process when some changes are detected.

5.2 � Technique

Our developed technique consists of transmitting a specific 
ultrasonic signal and observing the corresponding reflected 
one. The sensor then processes the received signal to get the 
reflection pattern of the environment. We call a reflection 
pattern, the result of the environment’s response to the emit-
ted ultrasonic signal, which depends on several parameters, 
like the environment’s dimensions, boundaries, the position 
of obstacles, furniture, etc. Therefore, any changes in this 
environment will be observed in the reflection pattern.

(14)titeration = 2 × nhops × ttransmission

(15)tmax = titeration × niterations

(16)

tmax = 2 × nhops × ttransmission ×

(
1 +

⌊
log[2]

Pmax − Pmin

�

⌋)

When the sensor switches to a new optimal transmit 
power level Poptimal , it records the corresponding reflection 
pattern of the environment. Then, it checks periodically if 
the reflection pattern has changed. Once the acquired reflec-
tion pattern of the environment does not match the recorded 
one, this indicates that the environment has changed and the 
power hopping technique is re-triggered, to compute the new 
optimal power level.

5.3 � Obtaining the reflection pattern

The emitted ultrasound is a short-time signal in the non-
audible frequency range. We have investigated different sig-
nal types, and our tests showed that a chirp signal is more 
immune to interference, as compared to a sinusoidal signal. 
Therefore, the emitted ultrasonic signal x[n] is a chirp with 
20 and 21 kHz as lower and upper frequency limits respec-
tively. As the signal frequency range falls in the supported 
frequency range, the same hardware previously used can 
be leveraged for emitting the chirp signal and receiving the 
reflected one.

We denote the environment’s impulse response by h[n], 
which defines the multipath propagation of the emitted sig-
nal’s reflections, caused by the obstacles and environment’s 
boundaries. It can be written as:

where am , �m , and �m represent the signal attenuation, 
phase difference, and time delay of the mth multipath signal 
respectively.

(17)h[n] =

M−1∑
m=0

ame
j�m�(n − �m)

Fig. 3   Flow chart showing how the power hopping is triggered when 
the environment is changed
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When the ultrasonic signal x[n] is emitted in the environ-
ment, the received signal y[n] is the convolution of the trans-
mitted signal x[n] with the discrete-time version of the room 
impulse response h[n], plus an additive noise �[n] assumed 
to be white Gaussian:

The assumed noise is used to model the random noise caused 
by uncontrolled sources (ambient noise in the environment, 
noise introduced by the receiver, etc.). The reflection pattern 
R[n] is obtained by applying a matched filter to the received 
signal y[n], as depicted in Fig. 4.

5.4 � Comparing reflection patterns

Instead of calculating a numerical expression of the envi-
ronment’s response for each frame, we statistically process 
the reflection patterns in order to spot the variations in the 
environment response. We call Rref [n] the reference reflec-
tion pattern, which corresponds to the current optimal power 
level Poptimal . A new acquired reflection pattern R[n] is com-
pared to the reference Rref [n] in order to infer whether the 
indoor environment has changed. The comparison of two 
reflection patterns is achieved by cross-correlation, to deter-
mine the similarity between them. We denote by similarity 
index, the maximum value of the cross-correlation result in 
absolute value:

Figure 5 shows how two reflection patterns are compared. 
The similarity index is a value ranging between 0 and 1. A 
high index (close to 1) shows high similarity of the com-
pared reflection patterns meaning that the environment did 
not change. On the other hand, a low similarity index indi-
cates the compared reflection patterns are uncorrelated and 
therefore the environment response has changed. A threshold 
value is used to differentiate the similarity indices, which we 
empirically set to (0.9).

When the ultrasonic signal x[n] is emitted in the indoor 
environment, it propagates in a semispherical pattern. The 
direct line-of-sight copy of the signal is the first one to be 
picked up by the receiver as it travels the shortest distance. 
Subsequent multipath copies of the signal scattered by dif-
ferent objects, obstacles, and enivronment’s boundaries are 

(18)y[n] = x[n] ∗ h[n] + �[n]

(19)similarity index = max|cross-correlation(Rref ,R)|

received at later time instants. After a certain time dura-
tion Ttotal , the propagated signal vanishes (becomes too 
weak to be picked up by the receiver). In Fig. 6, we show 
an indicative example of the signal propagation in the 
case where the environment changes. This example aims 
to show only the concept of the difference in the environ-
ment’s response, rather than the actual exact propagation 
obeying physics laws.

5.5 � Algorithm

Algorithm 2 describes in pseudo-code the technique of 
detecting the variations in the sensor’s environment.

Fig. 4   Obtaining the reflection pattern

Fig. 5   Comparing two reflection patterns
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6 � Experimental evaluation

6.1 � Prototype

In order to test the performance of the suggested power hop-
ping method, we implemented a prototype of an ultrasound 
motion sensor. The prototype, shown in Fig. 7, is composed 
of a transmitter (a commodity speaker) and a receiver (a 
commodity microphone) both connected to a Raspberry Pi 
board1, which acts as the control/processing unit, and imple-
ments the described power hopping method. The transmit-
ted signal frequency used is 21 kHz, and the frequency 
band considered in the processing of the received signal is 
20–22 kHz.

6.2 � Testing methodology

The prototype of the sensor is fixed inside a certain area. 
For a chosen maximum transmitter power Pmax , the detec-
tion parameters ( |Ystill| , threshold) are calibrated as described 
in Hammoud et al. (2017c).

The sensor waits to detect movements before triggering 
the power hopping process. A person walks to the designated 
area, moves for few seconds and then leaves the area. During 
this time, the sensor runs the power hopping method, and 
switches to the optimal power level.

Aiming to cover different environments, the previous test-
ing process is repeated for 4 different cases, as follows:

•	 Case 1: The area is a large room (Room A) with dimen-
sions 6 × 7.8m , the sensing unit is placed such that the 
LOS is not obstructed.

•	 Case 2: Same area of case 1, but the sensing unit is 
placed behind an obstacle blocking the LOS.

•	 Case 3: The area is a small room (Room B) with dimen-
sions 6 × 3.9m , LOS not obstructed.

•	 Case 4: Same area of case 3, with the sensing unit placed 
behind an obstacle blocking the LOS.

Figure 8 illustrates the different test cases for which the 
power hopping method was tested. In each case, we note 
the obtained optimal power level Poptimal . Once the power 
hopping process is over, and as a double check, we verified 
that the new transmitter power is capable of detecting the 
motions in the room as the previous power Pmax.

6.3 � Power hopping results

The results summarized in Table 1 show the optimal level of 
transmitter power Poptimal obtained through the power hop-
ping process, and also the power saving in each case.

The power hopping method aims to find the optimal trans-
mitter power, and to cut unnecessary transmitter power used. 
In general, we see that an important power saving in the 
transmitter power can be achieved (up to 78% as in case 

Fig. 6   Indicative example showing the difference of the environment response, when there is a change in its layout

Fig. 7   Prototype of the ultrasound motion sensor used for testing1  https​://www.raspb​erryp​i.org/produ​cts/raspb​erry-pi-3-model​-b/.

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
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3). The obtained results show that the required transmitter 
power varies in function of the specific environment (room 
size, obstacles, etc.). A big room, compared to a small one, 
requires more signal power to cover the whole area and 
detect movements inside it. This explains why, under the 
same settings, the system placed in a small room (case 3) 
requires less power than the case of a big room (case 1), 
yielding more saving in the transmitter power (78 vs 69% ). 
On the other hand, when the sensor is placed behind an 
obstacle, a higher transmitter power is needed to propagate 
around the obstacle and detect movements behind it, as com-
pared to a case with a direct LOS. This is the reason why 
we notice more power savings in cases 1 ( 69% ) and 3 ( 78% ), 
compared to cases 2 ( 4% ) and 4 ( 24% ) respectively. Case 
2 represents an extreme environment in terms of size and 
obstacles, this is why a very little saving in the transmitter 
power is achieved ( 4% ). This shows that the full maximum 
power level Pmax might still be needed in such environments.

It is worth noting that although the obtained results 
show that it is possible to achieve a saving in the trans-
mitter power in some environments, the actual amount 
of power saving remain specific for the settings of each 
environment, and the values we obtained are only indica-
tive in this regard.

6.4 � Testing environment changes

In order to test our proposed technique for detecting the 
changes in the sensor’s environment, we proceed as fol-
lows: For each of the scenarios tested above, when the 
power hopping process has converged and the Poptimal is 
found, the corresponding reflection pattern is obtained by 
the sensor when the room is vacant. We compare all the 
collected reflection patterns corresponding to the different 
environments:

1.	 R1[n] : reflection pattern of Room A, sensor in LOS.

Fig. 8   Illustration of the different test cases

Table 1   Power saving as a result of the power hopping method

Case Original 
transmit 
power

New transmit 
power

Power saving

#1: Room A, LOS P
max

0.31P
max

69%

#2: Room A, 
NLOS

P
max

0.96P
max

4%

#3: Room B, LOS P
max

0.22P
max

78%

#4: Room B, 
NLOS

P
max

0.76P
max

24%
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2.	 R2[n] : reflection pattern of Room A, sensor in NLOS.
3.	 R3[n] : reflection pattern of Room B, sensor in LOS.
4.	 R4[n] : reflection pattern of Room B, sensor in NLOS.

The aim of having multiple cases is to check how well 
can the changes in the environment be detected using the 
reflection patterns. In the first case, we have a large room 
where the sensor is placed in the corner with a direct 
LOS. In the second case, the layout of the room is kept 
unchanged except that an obstacle is placed in front of the 
sensor, blocking the LOS. Since in this case, the sensor 
is supposed to detect that a change occurred and to rec-
ompute the optimal transmit power Poptimal , it is essential 
to check that this change is detectable by comparing the 
reflection patterns of the two Cases 1 and 2. The same 
reasoning is used when comparing Cases 3 and 4, but this 
time in a small room with the sensor placed in LOS and 
NLOS respectively.

On the other hand, comparing the reflection pattern of 
Case 1 or 2 with that of 3 or 4, shows whether placing the 
sensor in a completely new environment is detectable by our 
method. This can show that when the sensor is re-installed 
or moved to in a new place, it is able to detect this change 
and trigger the power hopping process accordingly, to rec-
ompute Poptimal.

6.4.1 � Results

The similarity index between each two reflection patterns is 
calculated as described in Section 5, to test if the proposed 
technique is capable of detecting the changes in the sensor’s 
environment. In Table 2, we present the values of the simi-
larity indices between the different reflection patterns. The 
results show that the change in the environment, whether 
it is placing in a new environment (1 compared to 3 or 4 
for instance), or variations within the same environment (1 
compared to 2, or 3 compared to 4), is possible to detect 
using the value of the similarity index of reflection patterns. 
All the similarity indices fall below the threshold of 0.9 for 
reflection patterns of changed environment. This proves that 
the proposed technique is capable of sensing any changes in 
the sensor’s environment, and triggering the power hopping 
when it is the case.

7 � Limitations of the proposed method

We present in this section the possible limitations that could 
reduce the efficiency of our proposed method:

•	 The method detects major changes in the environment, 
and triggers the power hopping process when it is the 
case, in order to recalculate the new optimal power level. 
The new power level is then used for motion detection, 
until the environment changes again. However, if a 
given environment is continuously changing, then the 
optimal power level will be continuously recalculated 
and updated, thus reducing the general efficiency of the 
power hopping process in achieving power saving.

•	 As we saw previously in the obtained results, the cut in 
power consumption is higher with limited-size environ-
ments, and with low obstacle abundance. However, if the 
ultrasonic sensor is used to cover a very large area, or if 
the density of obstacles is relatively high, then the power 
reduction achieved by the power hopping method would 
not be significant.

8 � Conclusion

In this work, we have presented the power hopping method, 
a power optimization technique for ultrasound motion sen-
sors. The method aims to reduce the overall power consump-
tion of these sensors, by cutting unnecessary transmitter 
power used. The results show that a possible saving in the 
transmitter power can be achieved, which can be significant 
or minor depending on the environment. The power hop-
ping method can be very useful especially when the energy 
source is limited, like when the sensor is battery-powered, 
so that the battery life is extended. We have also derived 
an upper bound limit of the method’s convergence time. 
Additionally, we have designed a technique to automati-
cally detect potential changes in the sensor’s environment. 
This technique complements the power hopping process by 
making sure the obtained optimal power level is valid for 
the unchanged environment, and automatically triggering 
the process when changes are detected.
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