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Abstract—The last decade there has been an increasing re-
search interest in the field of human activity recognition in
the frame of designing context-aware applications. There is a
plethora of parameters that affect the performance of an activity
recognition system. However, designers of such systems often
either ignore some factors or even neglect their importance. In
this paper, we present and discuss in detail research challenges
in human activity recognition using inertial sensors, and we
analyse the significance of the existent parameters during the
design and the evaluation of such systems. We exemplify the role
of the aforementioned parameters with an experiment that was
conducted, in which 11 people performed 5 different activities.
Data were recorded from the inertial sensors of a wrist-worn
smartwatch. We illustrate how various parameters of the system
can be configured and demonstrate how they impact the whole
system’s performance. This work aims to be used as a concise
reference for future endeavours in the field of human activity
recognition using inertial sensors of mobile devices in general,
and of wrist-worn smartwatches in particular.

Keywords—Activity recognition, feature extraction, machine
learning, pattern recognition, smart devices, wearable sensors.

I. INTRODUCTION AND RELATED WORK

Over the past decade, there have been great efforts towards
Activity Recognition (AR) methods and techniques both by
researchers and the industry. There are many applications that
either require or would benefit from AR. Healthcare monitor-
ing systems use sensors to track Activities of Daily Living
(ADL) of older adults and assist the work of caregivers [1].
Besides the healthcare sector, other domains that benefit from
AR include sports [2], entertainment [3] and the industrial
sector [4].

Several commercial products rely on AR. All major video
game console manufacturers have developed such systems.
Nintendo recognises gestures using the inertial sensors of the
handheld controllers starting from the Nintendo Wii console
[5]. Microsoft identifies activities by monitoring full-body
movement using the Kinect camera [3]. Sony uses inertial
sensor data from the controllers and tracks them in space
using a camera with the PlayStation Move system. All these
systems, while initially developed for entertainment, have
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also been used by researchers for rehabilitation purposes [6].
Modern Virtual Reality (VR) consumer products, like the
HTC Vive, use both Inertial Measurement Units (IMU) in
hand-held controllers and cameras that detect user gestures
and activities. Although these devices have initially targeted
gaming, researchers have exploited their capabilities so that
they can be used in other domains, like in health applications
[7].

The proposed approaches for AR systems can be roughly
divided into two categories, the inertial sensor-based ones [8]
and the camera-based ones [9]. In the sensor-based methods,
one or more inertial sensors, such as accelerometers and
gyroscopes, are attached to the human body. Time-series
techniques are applied to the collected signals to extract useful
information. In the camera-based methods, different computer
vision techniques are employed to obtain analytical results.

Camera-based AR methods use video sequences recorded
by video cameras to detect human gestures and activities. AR
is an important domain of research in computer vision, and
its applications include patient monitoring systems and video
surveillance systems [10]. Processing and feature extraction
from raw videos target the finding of specific characteristics
such as colours, shapes and body motions that can describe
human activity. These features can also be used for body model
reconstruction [11]. Despite all the progress made for AR
using vision-based methods, they pose particular limitations.
They are intrusive and thus can not be used in applications
where privacy is a requirement. Moreover, due to the fixed
locations of the cameras, these techniques can not be used for
real-time applications where constant monitoring is required.

Inertial sensor-based AR techniques overcome these last
limitations. The increased availability of such sensors due
to the omnipresence of smartphones and smartwatches has
enabled the use of AR techniques in ubiquitous computing.
Sensor-based AR systems are either knowledge-driven or
data-driven. Knowledge-driven approaches use prior domain
knowledge to build an abstract model and apply the model to
the recorded data [12]. On the contrary, data-driven approaches
work by extracting correlations between data and gestures and
eventually build a model for classification [8].

While there are already a lot of works and applications of
AR, very few of them [13] discuss the parameters and the
choices that impact the performance of an AR system. Usually,
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those works present a single application specific best solution.
The scope of this paper is to discuss the various design
parameters that are crucial when performing AR. An AR
system is developed to show how different variables impact the
performance of it. Developing the optimal AR system would
require a massive dataset, a lot of experiments and computing
power for parameter tuning, and is out of the scope of this
publication. There is a large variety in every step of creating an
AR system, starting from the data acquisition and the feature
engineering up to the training and classification phases, and
every single step can significantly impact the system as a
whole.

The rest of the paper is organised as follows. In Section II
we discuss the considerations and the parameters that affect
every AR system in the design, implementation, testing and
evaluation phases. In Section III we present the experiment that
we have conducted and in Section IV we evaluate a variety
of tests and show how each parameter tuning may impact the
performance of the overall system. Finally, we conclude our
work in Section V.

II. DESIGN CONSIDERATIONS

There are many challenges when designing an AR system.
In this section, we are presenting a list of considerations
and parameters that impact every AR system during the
design, implementation, testing and evaluating phase. Fig. 1
summarises the considerations that are further discussed.

A. Data Characteristics

1) Intra-class Variations: The first challenge of any AR
system is to be robust to intra-class variations. Intra-class
variations mainly exist because the different activities are
performed differently by various people. For example, if
inertial sensors are attached to the wrists of two people
running, it is very improbable that we observe a similar swing

in both cases. Intra-class variations can also exist among
activities performed by the same person. For example when a
person is walking to catch a bus and when the same person
is taking an after-work walk. Theoretically, the prediction
from both cases should belong to the “walking” class, but
in practice, also depending on where the inertial sensors are
placed, the recorded data might significantly differ. To tackle
with this issue, the designer of the system should capture a
significant amount of training data, both from a single person
but also from several others, for the dataset to capture as
much variability as possible. It is crucial for a model to avoid
overfitting and be robust across different people.

2) Inter-class Similarities: Another challenge arises when
a system aims to identify classes that are different, but the
recorded sensor data show very similar characteristics. An
example would be to differentiate between the activity of
walking with a stroller and the one of walking with a shopping
cart. To tackle this issue, the designer can either take more
and different sensors into account or observe other correlated
activities that take place in parallel [14].

3) The Null Class: In a continuous data collection setting,
like in an all-day running AR system, the indifferent to the
designer classes for identification may be more and may form
the majority of the collected dataset. In that case, the irrelevant
activities that have similar characteristics to the relevant ones
form the null class. The null class is extremely hard to model
since it encapsulates an arbitrary and theoretically infinite
number of activities. The simplest way would be to identify the
null class with the data patterns that significantly differ from
those of the desired activity. Other methods like self-training
[15], may allow the designer to use the null class during the
training of the AR model.

B. Dataset Specific Challenges

1) Definition and Diversity of the Classes: When designing
an AR system, it is essential to define the classes of the activi-
ties that are of interest to the specific application. Although this
task seems to be of little importance, it can be tricky because
human activities are highly diverse, can be performed in many
ways and sometimes even the definition of them can vary.
There have been researches on the definition of a taxonomy of
activities [16] that can prove a good reference for AR systems
designers.

2) Qualitative Information of Activities: While the vast ma-
jority of research for AR systems aims at detecting the activity
that is being performed at a specific moment, little progress
has been made on the extraction of its qualitative information.
It would be interesting for example for physiotherapists to
be able to know if their patients are executing the prescribed
activities correctly, and if not, to understand the source of the
problem. Such research has so far only targeted the sports
sector, and the settings were too constrained [17].

3) Imbalanced Classes: Another challenge of any AR
system arises when the classes to be modelled do not exist
in similar quantities in the training dataset. This problem is
profound in long-term monitoring settings because only a



few activities take place frequently, e.g. walking, while others
scarcely, e.g. doing squats. Possible ways for a researcher to
ameliorate this situation include the recording of additional
training data of the underrepresented classes, the generation of
simulated training data and oversampling the smaller classes
[18].

4) Ground Truth Labelling: A necessary, laborious and
time-consuming task for all supervised AR systems is the
annotation of the training data. Post hoc annotation is possible
for data captured from cameras by labelling the footage but
is difficult to achieve with inertial sensor data. In laboratory
settings, the researcher can annotate the data in real time, but
in daily life situations, the user has to label the data with
the ground truth with techniques like the experience sampling
method [19].

5) Experiment Design: An essential aspect of any AR
system is the data collection and the overall design of the
experiment. So far there are only a few general purpose
datasets [20] that can be used for activity recognition and there
is no commonly agreed way to collect data. The recorded data
depend on the designer of the experiment, and usually, every
study has different priorities, e.g. a large number of partici-
pants, a large dataset, clean data, etc. Datasets are also not
always publicly available to be reused in other experiments.
To be able to have comparable and reproducible scientific
results and focus more on the methods for data analysis, it
is crucial for the scientific community to commonly agree on
some standard data acquisition guidelines and datasets.

C. Application Specific Challenges

1) Sensors Variety: There is considerable variability in
the available sensing equipment. Apparently, every sensor
has different specifications given by the manufacturer of it,
such as sampling frequency, accuracy, precision and operating
temperature range. Moreover, mobile devices can be used
in different ways. For example, for the same activity, one
would expect different recordings from the inertial sensors of
a smartwatch worn on the wrist than from a smartphone kept
in the pocket.

Smart devices embedded three-axis accelerometers and
three-axis gyroscopes are most commonly used in inertial
sensor-based AR systems [21]. Fusing both accelerometer
and gyroscope data usually leads to a better recognition
performance than when only using a single source of data.
A three-axis magnetometer can be also used in conjunction
with the aforementioned sensors in order to optimize the
detection of the orientation of the user in space [22]. A nine-
axis inertial sensor refers to a three-axis accelerometer, a three-
axis gyroscope and a three-axis magnetometer enclosed in a
single module.

2) Miscellaneous Considerations and Tradeoffs: There are
many tradeoffs that each AR system designer should consider.
Some computer applications that rely on gesture recognition
should run in real time, while for others such as monitoring
long-term behaviour, for example, an offline analysis may
suffice. There are also tradeoffs associated with the accuracy,

the power consumption and the latency of the system. In
case the application runs on a mobile device, power efficiency
should be taken into account sometimes even opposed to the
accuracy and the latency of it [23].

D. Data Handling

1) Data Acquisition: The first step in any IMU-based AR
system is to capture raw data using different inertial sensors,
attached to different locations of the user’s body. There are
also advanced systems that use even more environment sensors
to record additional data [24]. Some sensors provide multiple
values, like for example the accelerometer that gives three
recordings, one for each of the x, y and z-axes. Each sensor is
sampled at regular time intervals, and the recorded raw data
correspond to a multivariate time-series dataset. The sampling
frequency is different per sensor and sometimes can be set
according to the requirements of the application, e.g. for power
saving.

2) Data Preprocessing: Before proceeding to extract fea-
tures from the available raw dataset, the data need to be
preprocessed and cleaned. Among the raw data, there might
be artifacts caused by electromagnetic interference that need
to be filtered out. Also, data streams from different sensors
should be synchronised at that point. In case the streams have
a different sampling rate, they should be resampled with the
same frequency. Data may also be calibrated according to the
sensor characteristics and normalised. Data preprocessing is
a generic step, and the same actions should be applied to all
input data with no exceptions [25].

3) Data Segmentation: In this part, we are identifying
the segments of the preprocessed data that contain useful
information about the activities to be detected. Each segment
has a duration and is defined by the start time and the end time
within the time-series dataset. It is hard to segment the dataset
ideally because in daily life there is not always a concrete
pause between two consequent activities and the boundaries
are tough to define.

A widely used data segmentation method is the sliding time
window one. In the sliding window approach, a window of a
specific width is moved across the data and defines the start
and the end of the segment. The higher the width, the higher
the lag, since the AR system has to “wait” for a specific
amount of time before a segment is full. The optimal size
of the window is not known, is inferred during the testing
phase and can influence the performance of the system [26].
Another variable of the segmentation phase is the step size.
While a small step size will increase the number of segments
and create some that potentially better contain information
about an activity, it will also increase the computing load of
the application, since some entries should be computed more
than once.

Another way to segment the preprocessed data may take
advantage of the fact that different activities have different
intensities and so the energy level of the IMU signals are
distinctive. Other methods for data segmentation include the
definition of either a rest position or a specific gesture [27].



Finally, segmentation can occur using external sources, like
calendar entries with the start and duration of different activity
sessions.

4) Feature Engineering: This step is about deriving features
from the raw time series data. These features will form the fea-
ture vector that will be used for machine learning. Depending
on the features, they can be either extracted on the segmented
windows or the entire activity. The most widely used features
in AR research consist of signal based ones. These can
be either time domain based statistical ones like the mean,
the median, the variance, etc. or frequency-domain features,
like the energy in specific frequency bands [28]. The more
features, the more training data are needed to classify activities
more accurately, and the more computational resources are
required for classification. On real-time and mobile systems,
for example, it is imperative to use a minimum amount of
features that do not significantly degrade the performance of
the system. There are methods to automatically reduce the
conventionality of the feature space by ranking and selecting
the most important ones [29].

5) Training and Classification: Before predicting activities
based on newly recorded sensor data, we must first train
the selected model. For supervised learning, a training set
is needed that consists of /N entries of feature vectors X
with corresponding output labels y. The selected model is
defined by a parameter set 6, which during the training phase is
learnt to minimise the classification error on the training set.
Then for classification, the selected model with the trained
parameter set 6 is used to map a feature vector X to a
set of confidence values y, that corresponds to the scores
for every class that exists in the class set. With the scores
vector and using either confidence thresholds or multiobjective
optimisation techniques, a single prediction class is selected
by the trained model.

Over the years, machine learning researchers have proposed
a large number of algorithms. Many of those have already
been used by the AR community to classify activities and
to solve application-specific problems. The used methods
include among others Hidden Markov Models [30], dynamic
Bayesian networks [31], Decision Trees [32], Support Vector
Machines [33], etc. There have also been researchers that have
implemented deep learning neural networks techniques [34]
for AR. So far no research derives one or a set of best machine
learning algorithms for AR. The decision on that depends on
the characteristics of the data. For example, if the dataset
consists of many observations in a low dimensional space, then
even the k-Nearest Neighbours (kNN) method may perform
sufficiently well, while in other cases a more complex model
may be necessary. There are also techniques to fuse the results
of multiple classifiers to create a model that performs better
than the submodels that it consists of [35].

6) Performance Evaluation: The last step when training a
model for AR is to evaluate its performance [36]. Various
performance metrics can be used for evaluation, metrics such
as True Positive (TP) and False Positive (FP) rate, precision,
accuracy, F-scores and recall. The confusion matrix sum-

marises how many instances of the training set, either in
absolute terms or a percentage, were correctly classified and
how many were not. The Receiver Operating Characteristic
(ROC) and the Precision-Recall (PR) curves also provide an
insightful view on the predictive performance of the model.

The evaluation scheme that is typically used to evaluate
AR models is the k-fold cross-validation scheme. According
to this, the training set is partitioned into multiple folds. All
of them but one are used to train the model and then the
remaining fold is used to evaluate the performance of the
model. This procedure is repeated until all folds have been
left out once. The performance results are then averaged to
evaluate the performance of the predicted model. A hold-out
strategy can also be used, where the model is trained once on
a percentage of the available dataset and then evaluated on the
rest of it.

III. EXPERIMENTAL DESIGN

We conducted an experiment in which we will showcase
how different design decisions of an AR system compare and
impact the overall performance of the system. We focused
on recognising mobility activities from wrist-worn inertial
sensors. Activity tracking applications running on smartphones
use this kind of AR. At this point, however, we should note
that in real life scenarios the problem of AR appears to be
more demanding mostly because of the noise in the data and
the variability of the way the activities can be performed.

A. Setup

We recorded the wrist movements of 11 male participants
of ages 25-35 that performed 5 different mobility activities.
The mobility activities include walking, running, idling in the
office, going up and going down the stairs. Each participant
was asked to perform each of the 5 activities for around 35
seconds for 4 times in total. With this, we guaranteed that
the recorded dataset would be balanced. For the going up
and going down the stairs activities, the 35 seconds target per
recording could not always be satisfied, because the time of
going up or down the available staircase varied according to
the pace of each user. The resulting total dataset was roughly
128 minutes.

B. Sensors and Data

Wrist measurements were recorded using the inertial sensors
of the Sony SmartWatch 3 watch running Wear OS. The watch
was worn on the dominant hand of every participant which
was the right for ten participants and the left for one of them.
The available IMUs were a three-axis accelerometer and a
three-axis gyroscope. All recordings were timestamped and the
sampling rate for the accelerometer and the gyroscope was 150
Hz. During all recordings, the main researcher was observing
and instructing the participants in order to correctly annotate
with the ground truth and guarantee the cleanliness of the data.
We used Matlab for feature extraction from the time series data
and Python with the Scikit-learn module [37] for the machine
learning experiments.



TABLE I
LIST OF EXTRACTED FEATURES PER SENSOR

Features No of features

1 Mean 5
Standard deviation
Median
Skewness
Kurtosis
2 25th percentile 7
75th percentile
Sq. sum of < 25th perc.
Sq. sum of < 75th perc.
Maximum frequency

Sum of 5 Hz 9
Number of peaks

Domain Group

Time

Frequency 3

IV. EVALUATION

As previously discussed, there are many components of an
AR system that can be implemented in a variety of ways,
and each such decision impacts the overall performance of
the system. In this section, we will methodically evaluate our
system with a plethora of choices regarding its parameters.
We have searched up to a certain extent, also considering
that all steps are interdependent and need to be configured
jointly to achieve optimal results. This challenge becomes
even more prevalent in real time AR systems that need to
be regularly optimised based on user feedback and need to
adapt continuously.

Since the IMUs that we have used did not provide a constant
sampling rate throughout the recordings, the raw sensor data
were resampled with a sampling frequency of 60 Hz. This
frequency was selected for this study as it is higher than the
20 Hz commonly required to assess daily living [38] and also
lower than what typical off-the-shelf IMU components can
achieve.

Both time and frequency domain features were computed
for both sensors. The time domain features include the mean,
the standard deviation, the median, the skewness, the kurtosis,
the 25th and the 75th percentile, and the squared sum of the
components under the 25th and the 75th percentile. Those
were derived from the resultant vector. For the frequency
domain features, a Fast Fourier Transform (FFT) was per-
formed after normalisation on the windows, and the features
were computed per axis. Those features include the maximum
frequency, the sum of heights of frequency components below
5 Hz and the number of peaks in the spectrum below 5 Hz, as
it was noticed that most of the signal strength lied between 0-5
Hz. All the features extracted for this study are summarised
and grouped in Table I. Group 1 includes two basic time
domain features, Group 2 contains the rest of them, and Group
3 includes all the computed frequency domain ones.

To evaluate the performance of our systems, we split the
available dataset into a training set (80%) and a test set (20%).
The 10-fold cross-validation scheme was used on the training
set in order to train the model, the performance of which was
evaluated on the aforementioned test set.
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Fig. 2. Box plot of multiple person-independent classifiers.

A. Machine Learning Algorithms and Person Dependence

For the initial test, we fed the features of Group 1 of
both the accelerometer and the gyroscope sensors, so four
features in total, into multiple machine learning algorithms.
The classifiers that we have evaluated are Logistic Regression
(LR), Support Vector Machines (SVM), Random Forest (RF),
Decision Tree (DT), Naive Bayes (NB), Extra Trees (ET) and
k-Nearest Neighbours (kNN). The features were computed
over a time window of 5s with a step size of 1s, so there
was a 4s overlap between consecutive windows.

We tested both a user-independent and a user-dependent
approach. Fig. 2 presents the box plot for all trained classifiers
for the user-independent tests. Table II presents the confusion
matrix for the kNN classifier, the best performing classifier for
this case. We notice that the idling and the running activities
achieve a perfect classification rate, even with a few features
and a simple kNN classifier. We also notice that the classes
that mostly suffer from misclassification are the going down
and up ones, with misclassification rates of 15.1% and 13.3%
respectively.

For the user-dependent approach, the results of all the 11
users for all selected classifiers are presented in Table III.
As expected, personalised models have on average a better
accuracy than person-independent ones, because they adapt to
a specific person. There is even a case that a perfect classifi-
cation rate was achieved (user 6, ET classifier). However, as
in the case of user 3, when intra-class variations exist, that is
when the user does not perform every activity in a consistent
way, the model does not perform equally well even though it
is a personalised one.

B. Sliding Time Window Size

One of the parameters selected during the feature extraction
phase is the size of the time window. To investigate how
the time window size affects the performance of our AR
system, we swept the time window for the values T, =
0.5,1,2,3,4,5,6,7,8,9,10, 15, 20s. We run all the classifiers
for all these cases using the same four features of group 1 of



TABLE II
CONFUSION MATRIX OF THE PERSON-INDEPENDENT KNN CLASSIFIER

Predicted class
Down Idle Up Walk Run
» | Down | 84.9% 0% 10.7% 4.4% 0%
e Idle 0% 100% 0% 0% 0%
z Up 7.5% 0% 86.7% 5.8% 0%
2 | Walk 4% 0% 6.3% 89.7% 0%
= Run 0% 0% 0% 0% 100%
TABLE III
ACCURACY OF MULTIPLE PERSON-DEPENDENT CLASSIFIERS
User Algorithms
LR SVM RF DT NB ET KNN
1 89.7% | 96.4% 97% 97% 90.3% | 98.2% | 95.2%
2 95.5% | 97.7% 97% 95.5% | 93.9% 97% 97%
3 781% | 83.2% | 90.5% | 85.4% | 79.6% | 86.1% | 86.1%
4 87.3% | 90.3% | 89.6% | 88.1% | 79.9% | 92.5% | 91.8%
5 96.3% | 97.8% | 97.8% | 94.9% | 949% | 95.6% | 98.5%
6 97.7% | 992% | 992% | 99.2% | 96.9% 100% 99.2%
7 98.5% | 993% | 98.5% | 98.5% | 95.6% | 98.5% | 97.8%
8 96.3% 97% 94% 92.5% 91% 97% 97.8%
9 82.5% | 81.7% | 84.1% | 86.5% 69% 83.3% | 85.7%
10 92.6% | 95.6% | 933% | 89.6% | 81.5% | 94.8% | 91.9%
11 91.3% | 96.4% | 96.4% | 94.2% | 949% | 95.7% | 94.9%
Avg. | 91.4% | 94.1% | 94.3% | 92.9% 88% 94.4% | 94.2%
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Fig. 3. Recognition performance for different time window sizes.

Table I for both sensors. On all tests, the step and thus the
overlap between two consecutive windows was equal to half
the time window size. For example, for the time window of
0.5s the selected step was 0.25s, for the time window of 1s
the overlap was 0.5s, and so on. The results are presented in
Fig. 3.

Naturally, as the time window increases, the available ob-
servations in the observations set that can be extracted from
the raw data decrease. We notice that the time window size
affects the recognition performance of the system, but up to a
point. When the time window is tiny, it usually can not contain
useful information about the executed activity.

C. Sensors and Features

In this part, we have experimented with multiple machine
learning algorithms and with various combination of the input
features. For each classifier, we tried all possible combinations
of the groups of features of Table I from both available sensors.
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Fig. 4. Box plot of multiple person-independent classifiers using all available
features from both sensors.

The results are presented in Table IV. Fig. 4 presents the box
plot for all trained classifiers for the user-independent tests
using all available features from both sensors.

The designer of an AR system usually has to decide on a
single classifier. This choice is usually not only based on the
performance of the model. Some classifiers tend to be more
computationally complex and sometimes their superiority in
performance may not justify the difference in their require-
ments concerning computing power. In our tests, for the last
test case, the SVM and the kNN classifiers achieved predictive
performances of 97.3% and 97.1%. However, the former is
more computationally demanding than the latter and may not
be suitable for a resource-restricted environment.

Moreover, the more features we are feeding a classifier, the
more computationally complex it becomes. Therefore, it is a
good practice to apply feature selection techniques to reduce
the feature set to the most significant features. In our case,
all automatic feature selection techniques ranked highest the
features extracted from accelerometer data. This result was
expected, given that according to the results of Table IV,
accelerometer features performed better than the equivalent
gyroscope ones in most cases when used independently.

V. CONCLUSION AND FUTURE WORK

This paper demonstrates different considerations for the
design of a sensor-based activity recognition system. After
discussing many parameters of such a system, we presented
an experiment of a smartwatch-based AR system. Depending
on the selection of the different parameters of the AR sys-
tem, the predictive performance of it changes. After several
tests, a predictive performance of up to 97.3% for a person-
independent model was achieved.

As with any real-world application, there were some limita-
tions regarding the collected dataset. For the study, participants
were asked to perform the required activities in their work
environment were conditions were not ideal. For example,
when going up or down the staircase, the participants had to
make a sharp turn to continue to the next chunk of stairs and



TABLE IV
PREDICTIVE PERFORANCES OF VARIOUS ALGORITHMS FOR VARIOUS INPUT FEATURE COMBINATIONS

Feature Sensors Algorithms
groups LR SVM RF DT NB ET KNN
A 79.7% | 80.2% | 83.3% | 83.7% | 712% | 81.9% | 83.4%
1 G 54% 539% | 61.9% | 61.9% | 51.5% 60% 60.6%
A+G 81.2% | 84.3% | 87.6% | 86.8% | 68.8% | 858% | 90.7%
A 84% 84.9% | 85.8% | 85.6% 73% 83.8% 87%
2 G 62.8% | 652% | 73.6% | 72.2% | 53.9% | 70.1% 75%
A+G 88.1% | 89.3% | 89.5% | 90.3% | 70.4% 88% 93.9%
A 77% 80.6% | 89.1% | 91.4% | 76.7% | 87.4% | 88.8%
3 G 755% | 82.9% | 91.1% | 89.2% 72% 88.1% | 90.3%
A+G 89% 92.8% | 933% | 95.1% 80% 94.1% | 93.7%
A 83.7% | 84.6% | 863% | 86.2% | 74.4% | 84.4% | 87.7%
1+2 G 63.1% 66% 75% 71.3% | 53.6% | T1.7% 77%
A+G 87.8% | 89.8% 90% 90.7% | 70.6% | 89.8% | 94.3%
A 86.4% | 90.6% | 93.7% | 94.7% | 79.4% | 91.5% | 92.5%
1+3 G 784% | 84.8% | 91.9% | 91.1% | 70.4% 89% 91.5%
A+G 92.6% | 96.4% | 953% | 94.9% | 80.6% | 94.8% | 95.5%
A 90% 92.8% | 92.4% 94% 82% 90.5% | 93.9%
2+3 G 82% 88.2% | 92.8% 91% 70.8% | 90.4% | 93.6%
A+G 949% | 973% | 94.7% | 94.5% | 81.7% | 94.7% | 96.3%
A 90% 92.8% | 93.5% | 93.5% | 81.3% | 90.9% | 94.1%
14243 G 82.6% | 88.6% | 93.1% | 90.9% | 70.3% 90% 94%
A+G 952% | 97.3% | 95.5% 95% 81.3% | 953% | 97.1%
some time up to 1s was spent walking during this transition. [11] A. Baak, M. Miiller, G. Bharaj, H.-P. Seidel, and C. Theobalt, “A data-
Moreover, the participants were all men, and of a small age driven approach for real-time full body pose reconstruction from a depth
. camera,” in Consumer Depth Cameras for Computer Vision. Springer,
range, so the data are skewed regarding these aspects. 2013, pp. 71-98.
To extend this study, deep learning techniques will be [12] L. Chen, C. D. Nugent, and H. Wang, “A knowledge-driven approach to
evaluated. So far the analysis was performed offline on a activity recognition in smart homes,” IEEE Transactions on Knowledge
. and Data Engineering, vol. 24, no. 6, pp. 961-974, 2012.
dCSktop computer. It would be of interest to evaluate how [13] A. Bulling, U. Blanke, and B. Schiele, “A tutorial on human activity
different choices would affect a real-time system running on recognition using body-worn inertial sensors,” ACM Computing Surveys
a smart-watch and what performance can be achieved having (CSUR), vol. 46, no. 3, p. 33, 2014. N ,
. . [14] T. Huynh, M. Fritz, and B. Schiele, “Discovery of activity patterns using
restricted power and computing resources. topic models,” in Proceedings of the 10th international conference on
Ubiquitous computing. ACM, 2008, pp. 10-19.
REFERENCES [15] M. Léngkvist, L. Karlsson, and A. Loutfi, “A review of unsupervised

[1] J. Pansiot, D. Stoyanov, D. Mcllwraith, B. P. Lo, and G.-Z. Yang, “Am- feature learning and deep learning for time-series modeling,” Pattern
bient and wearable sensor fusion for activity recognition in healthcare Recognition Letters, vol. 42, pp. 11-24, 2014.
monitoring systems,” in 4th international workshop on wearable and  [16] B. E. Ainsworth, W. L. Haskell, A. S. Leon, J. D. Jacobs, H. J. Montoye,
implantable body sensor networks (BSN 2007).  Springer, 2007, pp. J. F. Sallis, and J. R. Paffenbarger, “Compendium of physical activities:
208-212. classification of energy costs of human physical activities.” Medicine

[2] F. Kosmalla, F. Daiber, and A. Kriiger, “Climbsense: Automatic climb- and science in sports and exercise, vol. 25, no. 1, pp. 71-80, 1993.
ing route recognition using wrist-worn inertia measurement units,” in  [17] M. Kranz, A. MéLler, N. Hammerla, S. Diewald, T. P16Tz, P. Olivier,
Proceedings of the 33rd Annual ACM Conference on Human Factors in and L. Roalter, “The mobile fitness coach: Towards individualized skill
Computing Systems. ACM, 2015, pp. 2033-2042. assessment using personalized mobile devices,” Pervasive and Mobile

[3] K. K. Biswas and S. K. Basu, “Gesture recognition using microsoft Computing, vol. 9, no. 2, pp. 203-215, 2013.
kinect®),” in Automation, Robotics and Applications (ICARA), 2011 5th  [18] A. FernidNdez, V. L6Pez, M. Galar, M. J. Del Jesus, and F. Herrera,
International Conference on. IEEE, 2011, pp. 100-103. “Analysing the classification of imbalanced data-sets with multiple

[4] T. Stiefmeier, D. Roggen, G. Ogris, P. Lukowicz, and G. Troster, classes: Binarization techniques and ad-hoc approaches,” Knowledge-
“Wearable activity tracking in car manufacturing,” IEEE Pervasive based systems, vol. 42, pp. 97-110, 2013.

Computing, vol. 7, no. 2, 2008. [19] M. Csikszentmihalyi and R. Larson, “Validity and reliability of the

[5] J. C. Lee, “Hacking the nintendo wii remote,” IEEE pervasive comput- experience-sampling method,” in Flow and the foundations of positive
ing, vol. 7, no. 3, 2008. psychology. Springer, 2014, pp. 35-54.

[6] K. Tanaka, J. Parker, G. Baradoy, D. Sheehan, J. R. Holash, and [20] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public
L. Katz, “A comparison of exergaming interfaces for use in rehabilitation domain dataset for human activity recognition using smartphones.” in
programs and research,” Loading..., vol. 6, no. 9, 2012. ESANN, 2013.

[7] J. Egger, M. Gall, J. Wallner, P. Boechat, A. Hann, X. Li, X. Chen, and  [21] A. Wang, G. Chen, J. Yang, S. Zhao, and C.-Y. Chang, “A comparative
D. Schmalstieg, “Htc vive mevislab integration via openvr for medical study on human activity recognition using inertial sensors in a smart-
applications,” PloS one, vol. 12, no. 3, p. e0173972, 2017. phone,” IEEE Sensors Journal, vol. 16, no. 11, pp. 4566-4578, 2016.

[8] L. Chen, J. Hoey, C. D. Nugent, D. J. Cook, and Z. Yu, “Sensor-  [22] A. Cereatti, D. Trojaniello, and U. Della Croce, “Accurately mea-

[9]

(10]

based activity recognition,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), vol. 42, no. 6, pp. 790—
808, 2012.

R. Bodor, B. Jackson, and N. Papanikolopoulos, “Vision-based human
tracking and activity recognition,” in Proc. of the 11th Mediterranean

Conf. on Control and Automation, vol. 1, 2003.
X. Wang and Q. Ji, “A hierarchical context model for event recognition

in surveillance video,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2014, pp. 2561-2568.

[23]

suring human movement using magneto-inertial sensors: techniques
and challenges,” in Inertial Sensors and Systems (ISISS), 2015 IEEE
International Symposium on. 1EEE, 2015, pp. 1-4.

M. Shoaib, S. Bosch, O. D. Incel, H. Scholten, and P. J. Havinga, “A
survey of online activity recognition using mobile phones,” Sensors,
vol. 15, no. 1, pp. 2059-2085, 2015.



[24]

[25]

[26]

[27]

(28]

[29]

[30]

H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T. Campbell,
“Soundsense: scalable sound sensing for people-centric applications on
mobile phones,” in Proceedings of the 7th international conference on
Mobile systems, applications, and services. ACM, 2009, pp. 165-178.
Z. S. Abdallah, M. M. Gaber, B. Srinivasan, and S. Krishnaswamy,
“Activity recognition with evolving data streams: A review,” ACM
Computing Surveys (CSUR), vol. 51, no. 4, p. 71, 2018.

G. Okeyo, L. Chen, H. Wang, and R. Sterritt, “Dynamic sensor data
segmentation for real-time knowledge-driven activity recognition,” Per-
vasive and Mobile Computing, vol. 10, pp. 155-172, 2014.

A. Zinnen, C. Wojek, and B. Schiele, “Multi activity recognition
based on bodymodel-derived primitives,” in International Symposium
on Location-and Context-Awareness. Springer, 2009, pp. 1-18.

A. Dutta, O. Ma, M. P. Buman, and D. W. Bliss, “Learning approach
for classification of geneactiv accelerometer data for unique activity
identification,” in Wearable and Implantable Body Sensor Networks
(BSN), 2016 IEEE 13th International Conference on. 1EEE, 2016,
pp. 359-364.

S. Pirttikangas, K. Fujinami, and T. Nakajima, “Feature selection and
activity recognition from wearable sensors,” in International Symposium
on Ubiquitious Computing Systems. Springer, 2006, pp. 516-527.

L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257-286, 1989.

(33]

[34]

[35]

[36]

[37]

[38]

K. P. Murphy and S. Russell, “Dynamic bayesian networks: representa-
tion, inference and learning,” 2002.

L. Bao and S. S. Intille, “Activity recognition from user-annotated
acceleration data,” in International Conference on Pervasive Computing.
Springer, 2004, pp. 1-17.

T. Huynh, U. Blanke, and B. Schiele, “Scalable recognition of daily
activities with wearable sensors,” in LoCA, vol. 7, 2007, pp. 50-67.

C. A. Ronao and S.-B. Cho, “Human activity recognition with smart-
phone sensors using deep learning neural networks,” Expert Systems
with Applications, vol. 59, pp. 235-244, 2016.

L. I. Kuncheva, “A theoretical study on six classifier fusion strategies,”
IEEE Transactions on pattern analysis and machine intelligence, vol. 24,
no. 2, pp. 281-286, 2002.

J. A. Ward, P. Lukowicz, and H. W. Gellersen, “Performance metrics
for activity recognition,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 2, no. 1, p. 6, 2011.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learning
research, vol. 12, no. Oct, pp. 2825-2830, 2011.

C. V. Bouten, K. T. Koekkoek, M. Verduin, R. Kodde, and J. D. Janssen,
“A triaxial accelerometer and portable data processing unit for the
assessment of daily physical activity,” IEEE Transactions on Biomedical
Engineering, vol. 44, no. 3, pp. 136-147, 1997.



