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Résumé  
Les services pour smartphones et les applications sont omniprésents dans nos 
vies. La prise de mesures médicales préventives ou nécessaires pour améliorer 
le bien-être d'une personne est appelée «soins médicaux ». L'utilisation de 
dispositifs intelligents accorde plus d'attention aux soins médicaux jour après jour. 
Les applications médicales rendent les smartphones utiles dans la pratique de la 
médecine factuelle, en plus de leur utilisation dans la communication clinique 
mobile. 
À mesure que les gens vieillissent, ils ont tendance à devenir de plus en plus 
vulnérables aux handicaps physiques et aux maladies mentales. Afin d'éviter la 
détérioration de leur qualité de vie, nous avons inventé des applications qui aident 
les personnes âgées à continuer leurs activités quotidiennes (ADL). Plus 
précisément, nous avons réalisé des recherches dans deux domaines importants 
de la cybersanté, qui sont la détection des chutes et la détection du stress. Les 
chutes et le stress sont deux des principaux problèmes de santé auxquels les 
personnes âgées sont confrontées aujourd'hui. Ces deux graves problèmes de 
santé peuvent causer un large éventail d'autres conséquences liées à la santé qui 
détériorent la qualité de vie des personnes âgées et les rendent vulnérables à 
divers problèmes liés à la santé et donc aux problèmes. 
Le but de cette thèse est la description de la contribution d'un système de 
détection des chutes et d'un système de détection de stress dans la vie 
quotidienne des personnes âgées. Tout d'abord, nous présentons un système 
pratique de détection des chutes en temps réel sur une smartwatch appelé F2D. 
Les chutes parmi les personnes âgées restent une question de santé publique 
très importante. Dans la majorité des cas de chutes, un soutien externe est 
impératif pour éviter d'importantes conséquences. Par conséquent, la capacité à 
détecter automatiquement ces événements d'automne pourrait contribuer à 
réduire le temps de réponse et à améliorer considérablement le pronostic des 
victimes de chute. Dans F2D, les données de l'accéléromètre sont collectées, en 
passant par un algorithme adaptatif basé sur le seuil qui détecte des motifs 
correspondant à une chute. Un module de décision prend en compte le 
mouvement résiduel de l'utilisateur, qui fait le lien entre le  motif de chute détecté 
et une chute réelle. Contrairement aux systèmes traditionnels qui nécessitent une 
station de base et une centrale d'alarme, F2D fonctionne complètement 
indépendamment. À notre connaissance, c'est le premier système de détection 
d'automne qui fonctionne sur une smartwatch, moins stigmatisant pour l'utilisateur 
final. L'algorithme de détection des chutes a été testé par la Fondation Suisse 
pour les Téléthèses (FST), le partenaire du projet responsable de la 
commercialisation de notre système. De plus, en testant avec des données 
réelles, nous disposons d'un système de détection d'automne prêt à être déployé 
sur le marché. Enfin, le dernier module de F2D est le module de localisation qui 
rend notre système très utile pour les maisons de soins infirmiers qui accueillent 
des personnes âgées. 
Grâce à la connaissance que nous avons acquise en extrayant des informations 
utiles à partir des capteurs des périphériques intelligents et plus particulièrement 
en détectant les chutes à partir d'une smartwatch, nous avons amélioré notre 



 v

savoir-faire en analysant et en extrayant les modèles à partir des données de 
capteurs brutes. La prochaine mise en œuvre de notre expertise et deuxième 
élément principal de cette thèse est la détection de modèles de stress en 
analysant les données des smartphones. 
Par conséquent, nous présentons dans un deuxième temps un nouveau système 
de détection de stress qui vise à détecter les risques de stress et de burn-out en 
analysant les comportements des utilisateurs via leur smartphone. Le principal 
objectif de notre système de détection du stress repose sur l'utilisation des 
capteurs mobiles pour détecter le stress. En particulier, nous recueillons des 
données provenant de l'utilisation quotidienne des personnes, rassemblant des 
informations sur le mode de sommeil, l'interaction sociale et l'activité physique de 
l'utilisateur. Nous combinons l'information recueillie à partir de ces dimensions 
principales du bien-être et nous fournissons un score de relaxation à l'utilisateur 
final, ce qui lui fait prendre conscience de son niveau de stress. À notre 
connaissance, c'est le premier système qui calcule un score de stress basé sur 
différentes dimensions du bien-être humain. L'innovation principale de ce travail 
repose sur la façon dont le niveau de stress est calculé, par une méthode la moins 
invasive possible. Notre solution repose uniquement sur l'usage quotidien du 
téléphone. De plus, nous acquérons la donnée fondamentale, celle qui sera 
considéré comme vérité, pour chaque dimension du bien-être, pour chaque 
individu en demandant aux utilisateurs directement. Cela nous conduit à un 
modèle personnalisé qui se concentre sur la personnalité de chaque utilisateur. 
Notre algorithme de détection de stress a été l'élément clé d'un projet Active and 
Assisted Living (AAL) appelé StayActive et a été évalué dans un environnement 
réel avec des personnes travaillant dans la compagnie de transport public de 
Genève (Transports Public Genevois). 
Les deux systèmes présentés dans cette thèse ont été utilisés dans des 
applications qui seront disponibles sur le marché, en transférant directement la 
recherche scientifique sur un produit commercial. De plus, les deux systèmes ont 
été testés avec de vrais utilisateurs finaux et, par conséquent, la recherche a été 
un peu plus loin, au-delà des essais en laboratoire. 
Enfin, la communauté de recherche et celle du monde industriel ont montré un 
grand intérêt pour nos résultats de recherche. Par conséquent, nos résultats de 
recherche ont abouti à deux nouveaux projets de la Commission pour la 
technologie et l'innovation (CTI). Nous collaborons avec l'un des plus grands 
groupes de cliniques en Suisse, Hirslanden, travaillant sur un projet appelé 
Recover@home. L'idée principale de ce projet est de construire une solution pour 
surveiller un patient à la maison. De plus, nous collaborons avec Hirslanden dans 
un projet intitulé Stress and Burnout (SaB). L'innovation principale de SaB sera 
un algorithme permettant de calculer un niveau de stress en combinant les 
signaux biologiques enregistrés par un dispositif portatif, l'information 
comportementale d'un smartphone, ainsi que des réponses subjectives aux 
questionnaires médicaux standards. 
Pour récapituler, dans cette thèse, nous présentons deux applications de 
cybersanté. Nous commençons par un système de détection des chutes et nous 
continuons avec un système de détection du stress. Enfin, nous présentons les 
nouvelles orientations de recherche et les projets qui ont été créés en fonction de 
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notre expertise de détection de modèles à partir de données de capteurs brutes, 
collectées grâce à des périphériques intelligents. 
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Abstract 
Smart mobile services and applications are ubiquitous in our lives. The act of 
taking preventative or necessary medical procedures to improve a person's 
wellbeing is called healthcare. The use of smart devices is getting more attention 
in healthcare day by day. Medical applications make smartphones useful tools in 
the practice of evidence-based medicine at the point of care, in addition to their 
use in mobile clinical communication. 
As people get older, they tend to become more and more vulnerable to physical 
disabilities and mental illnesses. In order to prevent the deterioration of their 
quality of life we have invented applications that help elderly to sustain their 
activities of daily living (ADL). More specifically, we have made research in two 
important domains of e-health which are the fall detection and the stress detection. 
The falls and the stress are two of the main health problems that elderly people 
are facing nowadays. These two serious health problems can cause a wide 
spectrum of other health related consequences that deteriorate the quality of life 
of elderly people and make them vulnerable to various health related and so 
problems. 
The purpose of this thesis is the description of the contribution of a fall detection 
system and a stress detection system in the daily life of elderly people. Firstly, we 
present a practical real time fall detection system running on a smartwatch called 
F2D. Falls among older people remain a very important public healthcare issue. 
In the majority of fall events external support is imperative in order to avoid major 
consequences. Therefore, the ability to automatically detect these fall events 
could help reduce the response time and significantly improve the prognosis of 
fall victims. In F2D data from the accelerometer is collected, passing through an 
adaptive threshold-based algorithm which detects patterns corresponding to a fall. 
A decision module takes into account the residual movement of the user, matching 
a detected fall pattern to an actual fall. Unlike traditional systems which require a 
base station and an alarm central, F2D works completely independently. To the 
best of our knowledge, this is the first fall detection system which works on a 
smartwatch, being less stigmatizing for the end user. The fall detection algorithm 
has been tested by Fondation Suisse pour les Téléthèses (FST), the project 
partner who is responsible for the commercialization of our system. Moreover by 
testing with real data we have a fall detection system ready to be deployed on the 
market. Finally, the last module of F2D is the location module which makes our 
system very useful for nursing homes that host elderly people. 
Thanks to the knowledge that we acquired by extracting useful information from 
the sensors of smart devices and more specifically by detecting falls from a 
smartwatch, we enhanced our know-how analyzing and extracting patterns from 
raw sensor data. The next implementation of our expertise and second main 
element of this thesis is the detection of stress patterns by analyzing smartphone 
data. 
Therefore, secondly we present a novel stress detection system which aims to 
detect stress and burn-out risks by analyzing the behaviors of the users via their 
smartphone. The main purpose of our stress detection system is the use of the 
mobile sensor technology for detecting stress. In particular, we collect data from 
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people’s daily phone usage, gathering information about the sleeping pattern, the 
social interaction and the physical activity of the user. We combine the information 
gathered from these main dimensions of wellbeing and we provide a relaxation 
score to the end-user, making him aware about his stress level. To the best of our 
knowledge, this is the first system that computes a stress score based on different 
dimensions of human wellbeing. The main innovation of this work is addressed in 
the fact that the way the stress level is computed is as less invasive as possible. 
Our solution relies only on the daily phone usage of people. Also we acquire the 
ground truth for the importance of each dimension of wellbeing for each individual 
by asking the users. This leads us to a personalized model which focuses on the 
personality of each individual user. Our stress detection algorithm was the key 
element of an Active and Assisted Living (AAL) project called StayActive as well 
and it has been evaluated in a real world environment with people working in the 
public transportation company of Geneva (Transports Publics Genevois).  
Both of the systems that are presented in this thesis have been used in 
applications that will be available on the market, transferring directly the scientific 
research into a commercial product. Also both of the systems have been tested 
with real end-users and therefore the research has gone one step further, beyond 
the lab trials. 
Finally, people coming from the research community and the industrial world have 
shown great interest in our research results. Therefore, our research results led 
to two new Commission for Technology and Innovation (CTI) projects. We 
collaborate with one of the biggest clinic groups in Switzerland, Hirslanden, 
working on a project called Recover@home. The main idea of this project is to 
build a solution to monitor a patient while at home. Moreover we collaborate with 
Hirslanden for extending our stress detection system in a project called Stress 
and Burnout (SaB). The main innovation of SaB will be an algorithm computing a 
stress level by combining biosignals from a wearable device, behavioral 
information from a smartphone, as well as subjective answers to standard medical 
questionnaires. 
To recapitulate, in this thesis we present two e-health applications. We begin with 
a fall detection system and we continue with a stress detection system. Last but 
not least we present the new research directions and projects that have been 
created based on our expertise of detecting patterns from raw sensor data, 
collected from smart devices. 
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 1 
1 Introduction 

1. Introduction  
Ageing is a natural process, which presents a unique challenge for all sections of 
the society. Although the exact definition of elderly age group is controversial, it is 
defined as people with a chronological age of 65 years and above [1]. 
As people get older they become vulnerable to various illnesses that deteriorate 
their quality of life. It is very important for the evolution and the sustainability of 
our society to improve the conditions that the elderly people live. Especially 
nowadays that the population aging accelerates more and more (Figure 1) the 
demand of applications related to the improvement of health of elderly people 
becomes necessary. 

 
Figure 1: Children and elderly as percentage of global population: 1950-2050. 

Nowadays, thanks to the evolution of the medications, people are living longer. 
However, as they get older, their bodies change and new health issues arise. 
Many health issues, both genetic and environmental, affect how they age. 
The most widespread conditions affecting those 65 and older include arthritis, 
heart disease, stroke, cancer, pneumonia and the flu. Accidents, especially falls 
that result in hip fractures, are also unfortunately common in the elderly [2]. 

1.1 Elderly and health problems 
Healthy ageing is one of the most important parameters of elderly people’s lives. 
When elderly people have a good health, they can be an active part of the society 
and they can live independent enjoying their lives [1].  
The main health problems that elderly people are facing nowadays can be 
summarized as follows: dementia, including Alzheimer’s disease, depression, 
arthritis, osteoporosis, diabetes, breathing problems, frequent falls, which can 
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lead to fractures, Parkinson’s disease, sleep problems, eye problems (cataracts, 
glaucoma, Macular Degeneration) and weight loss [2]. 
The main research question that this thesis tries to answer is how elderly people 
could be able to sustain their well-being and their activities of daily living by using 
smart devices. Nowadays elderly people use more and more smart devices like 
smartphones and smartwatches. We take advantage of this evolution and we 
provide them with applications that can be used in their daily life without being 
invasive and at the same time help them to sustain their quality of life.  
During the last few years has been observed an increased adoption of 
smartphones by healthcare professionals as well as the general public. The 
smartphones and in general the smart devices like smartwatches and bracelets 
are a new technology that combines mobile communication and computation in a 
handled-size device making it very comfortable and not invasive for the end-user. 
In this context we have created two e-health applications that help elderly people 
to sustain their daily life activities and improve their autonomy for daily activities.  
Dealing with technical challenges related to the extraction of useful patterns from 
raw sensors of smart devices we have created innovative algorithms and e-health 
applications that help elderly people to sustain their well-being and avoid a wide 
spectrum of potential health issues. We have taken into account that most adults 
prefer to age in place. That is: to remain in the home of their choice as long as 
possible. These older adults have a determination to live in their homes and enjoy 
living in their homes for as long as they can.  
We are confident that the e-heath applications we have developed in this thesis 
will help older adults engage with their community, peers and families both socially 
and through active skill based engagement. They will retain their dignity and 
individuality, whilst engaging in a secure way with those in the community that 
they want to catch up with. This will increase the individual's self-esteem, 
confidence and positive sense of well-being. Thus delaying the need for some 
professional care and the associated costs and impact on resources, for both the 
individual and the community. 
In this thesis we focus our attention on two problems that are very crucial for the 
quality of life of elderly people [3]. More specifically we concentrate on fall and 
stress detection. Elderly people that are vulnerable to falling are not able to live 
independently. At first we present an innovative fall detection system (F2D), which 
gives the opportunity to elderly people that suffer from falling to feel safer. By using 
F2D they feel very confident for themselves and they are able to perform their 
activities of daily living (ADL) without any assistance. Then we present a stress 
detection system (StayActive) which gives the opportunity to people with ages 
between 55-70 years to live without stress about stress. Therefore the main 
purpose of this thesis is to provide help to elderly people that are vulnerable to 
falls and to stress-related problems. 

1.2 Falls and elderly people 
In this thesis we will concentrate at first on the problem of falling. The latter is one 
of the most serious problems for the elderly people [3]. By definition, a fall is an 
event which results in a person coming to rest inadvertently on the ground or other 
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lower level, as a consequence of the following: sustaining a violent blow, loss of 
consciousness, sudden onset of paralysis, or an epileptic seizure [3]. Falls are a 
major concern specifically for the elderly people [4]. Several studies have shown 
that falls are a main reason for hospitalizations for injuries for people with special 
needs like elderly people, disabled, overweight and obese [4]. Each year, millions 
of older people older than 65 years fall. More specifically, more than one out of 
four older people falls each year, but less than half tell their doctor [5]. 
Moreover, falls can also lead to disability and decreased mobility which often 
results in increased dependency on others and, hence, an increased need of 
being admitted to an institution. Finally, one other serious consequence of falling 
is the "long-lie" condition where a falling person remains on the ground or floor for 
more than an hour after a fall. The "long-lie" is a sign of weakness, illness and 
social isolation and is associated with high mortality rates among the elderly. Time 
spent on the floor can be associated with a fear of falling, muscle damage, 
pneumonia, pressure sores, dehydration and hypothermia [16, 17]. 
Moreover, the fear of falling is one major issue as people are getting older. A 
possible serious fall can lead to an injury and therefore the loss of independence 
for elderly people. By losing their independence they will need a person to take 
care of them and therefore they will not be able to perform all the activities that 
they were doing as they were younger and independent. This chain leads to the 
deterioration of their quality of life. These reasons, combined with the vast 
evolution of the smart-devices (e.g. smartphones, smartwatches) and the 
increasing accessibility and miniaturization of sensors, is leading to the 
development of fall detection systems.  
Therefore, we present an innovative fall detection system (F2D) which takes into 
account the residual movement of the user after falling and contextual data 
information into account. As context we mean the behavior of the user right after 
his fall and the location that the fall event took place. By taking into account the 
residual movement of the user and the context we are able to overcome the main 
challenges of the fall detection. The first main challenge is that several everyday 
fall-like activities are difficult to distinguish from a fall. Most of the current 
approaches define a fall as having greater accelerations than normal daily 
activities [18]. However, if we focus our attention only in this characteristic of a fall 
event we will have as a result a lot of false alarms. There are a lot of activities of 
daily living (ADL) e.g. going up the stairs, sitting on a sofa, which are characterized 
from a fast acceleration as well. The two main characteristics of a robust fall 
detection system are firstly the accurate detection of the fall events and secondly 
the minimization of the false alarms [34]. More specifically a successful fall 
detection system should achieve high sensitivity and specificity. No one will accept 
to use a fall detection system that does not detect all the fall events since it can 
lead in serious mistakes. Moreover it will be disturbing for the end-users to use a 
fall detection system that creates a lot of false positives and triggers many false 
alarms. F2D is a complete fall detection system since it meets these two above 
mentioned requirements. Moreover the third main characteristic of a fall detection 
system is the ease of installation. People and especially elderly will not accept to 
wear devices which are difficult to be installed. In F2D we meet this third 
requirement because the fall detection algorithm runs on a smartwatch. The user 
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wears his smartwatch as usual and in the background our fall detection system is 
able to detect the fall events, making it as less stigmatizing as possible. 
Finally, the context awareness that the location module has added to F2D is very 
important for the final scope of our fall detection system. Since we are targeting 
the care of elderly people who are in a nursing home, knowing the location of the 
user after a fall is very important. The caretakers will know in which room the 
elderly has fallen and therefore they will be able to immediately provide the help 
that this person needs. Since minimal cost and setup process for the end user 
were the requirements of the localization system, we used the minimum amount 
of Bluetooth beacons, that is one Bluetooth beacon per room, and we opted to 
develop a more sophisticated algorithm for room detection. 

1.3 People, smartphones and stress 
Stress is a pervasive part of the modern fast-paced life. The problem of job stress 
is widely recognized as one of the major factors leading to a spectrum of health 
problems [48]. By definition stress is the wear and tear on the body caused by 
constant adjustment to an individual's changing environment. Anything that 
causes change in our life causes stress. There are many changes going on in the 
lives of the elderly [8]. 
Stress can be short-term (acute) or long-term (chronic). Acute stress is the 
reaction to an immediate threat. This is commonly known as the "fight or flight" 
response. The threat can be any situation that is experienced, even 
subconsciously, as a danger. Under stress, a person's heart rate and breathing 
rate increase. His or her muscles become tense. A person's stress level increases 
when there are multiple stressors present. A person's body needs relief from 
stress to re-establish balance. As people age, the ability to achieve a relaxation 
response after a stressful event becomes more difficult. Aging may simply wear 
out the systems in the brain that respond to stress [9]. 
Stress detection remains one of the main research topics of affective computing 
[10]. However, the attention has shifted from controlled experiments to real-life 
scenarios out of the lab. Along this direction smart phones have become the main 
tools for analysis [11].  
Nowadays mobile smart devices and mobile internet are changing the way people 
do things in their daily life. The average time people spend on their mobile devices 
daily is 3 hours and 40 minutes (Figure 2) and that amount of time does not include 
the time we spend doing actual phone calls. 
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Figure 2: Time on mobile spent in apps. 

According to the participants that took part in a survey of Bank of America [12], 
they could not last a day without their smartphones [13]. By taking into account 
the necessity of smartphones in the daily life of people nowadays we are able to 
collect important information about their daily habits and more specifically different 
factors of their wellbeing, like their physical activity, their social interaction and 
their sleeping habits as well. 
In this thesis we focus on the problem of stress detection and more specifically on 
how it does affect the lives of people. Combining all the above mentioned 
parameters of the daily life of people we have built a sophisticated mathematical 
algorithm that provides a stress level for the users. The idea behind our stress 
detection system (StayActive) compared to others is that it tries to be as less 
invasive as possible. We inform the user for his stress level by using only 
information which comes from his smartphone. Then the user can take a break or 
another relaxation activity in order to reduce his stress level if it is high. 
We present a stress detection system which validates the results of stress that 
provides through self-assessment questionnaires. The participants of our study 
who were middle age people working for the public transportation company of 
Geneva (TPG) tested our stress detection module and provided their feedback 
evaluating the accuracy of stress detection. Based on the feedback that we 
acquired from the testers coming from TPG we conclude that we have created an 
accurate enough, not invasive stress detection system. Unlike other stress 
detection systems [46, 48, 61] StayActive uses information that comes from the 
daily phone usage of the end-users being as less invasive as possible for them. 
After our experience with end-users and of course after the discussions in the 



 6 6 

panels of the conferences that we have presented our work it has become pretty 
clear that the end-users will not accept to use an invasive wearable device (e.g. a 
t-shirt or a chest-band) in a daily basis. Even if you can ensure them that their 
stress detection will be pretty accurate they will not be willing to use an invasive 
device for a long period of time. This is the main vulnerability of such stress 
detection systems which are using wearable devices to measure the HRV and the 
GSR of the user and combine them with other features in a machine learning 
model in order to predict stress. 

1.4 Solutions 
People as they become older start having serious health problems which 
deteriorate the quality of their life. The scientific community tries the last decades 
to improve the quality of life of elderly people by assisting them with applications 
and digital tools that they can use in their daily life. 
In this thesis we focus on two of the main problems of elderly people which are 
the falls and the stress. We provide concrete solutions for detecting both of these 
problems. The solutions are two e-health applications. A fall detection system that 
helps elderly people when they have a fall accident and a stress detection system 
which measures and provides support to people that are stressed. Both of the 
systems have as ultimate goal to improve the quality of life of elderly people and 
make them live independent as long as possible. Independence is really important 
for everyone. Especially for the elderly people, the feeling of being independent 
makes them happy and it motivates them to continue their social lives and 
activities. 
Falls and the stress are two of the main problems that elderly people are facing 
nowadays. These two serious problems can cause a wide spectrum of other 
health related consequences that deteriorate the quality of life of elderly people 
and make them vulnerable to various health related and so problems. 
In this thesis we provide two innovative solutions. The first one is a fall detection 
system called F2D and the second one is a stress detection system called 
StayActive.  
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2. Fall detection 
Falls among older people remain a very important public issue [15]. In the majority 
of fall events external support is imperative in order to avoid major consequences. 
Therefore, the ability to automatically detect these fall events could help reducing 
the response time and significantly improve the prognosis of fall victims [73]. 
Despite extensive preventive efforts, falls continue to be a major source of 
morbidity and mortality among older adults. Yearly, more than 11 million falls are 
registered in the U.S. alone [14], leading to a wide spectrum of injuries for this age 
group. Aside from causing physical injuries, falls can also have dramatic 
psychological consequences that reduce elderly people's independence [15]. It 
has been found that after falling, 48% of older people report a fear of falling and 
25% report curtailing activities. 
Moreover, falls can also lead to disability and decreased mobility which often 
results in increased dependency on others and, hence, an increased need of 
being admitted to an institution. Finally, one other serious consequence of falling 
is the "long-lie" condition where a falling person remains on the ground or floor for 
more than an hour after a fall. The "long-lie" is a sign of weakness, illness and 
social isolation and is associated with high mortality rates among the elderly. Time 
spent on the floor can be associated with a fear of falling, muscle damage, 
pneumonia, pressure sores, dehydration and hypothermia [16, 17]. 
According to the World Health Organization [18] approximately 28-35% of people 
aged 65 and over fall each year increasing to 32-42% for those over 70 years of 
age. The frequency of falls increases with age and frailty level. In fact, falls 
exponentially increase with age-related biological changes, which is leading to a 
high incidence of falls and fall related injuries in the ageing societies. If preventive 
measures are not taken in the immediate future, the number of injuries caused by 
falls is projected to be a 100% higher in 2030. In this context, assistive devices 
that could help to alleviate this major health problem are a social necessity. 
Indeed, fall detectors are being actively investigated. 

2.1 State of the art 
A fall detection system can be defined as an assistive device whose main 
objective is to alert when a fall event has occurred. In a real-life scenario, they 
have the potential to mitigate some of the adverse consequences of a fall. 
Specifically, fall detectors can have a direct impact on the reduction of the fear of 
falling and the rapid provision of assistance after a fall. In fact, falls and fear of 
falling depend on each other: an individual who falls may subsequently develop 
fear of falling and, vice versa, the fear of falling may increase the risk of suffering 
from a fall [20]. Fear of falling has been shown to be associated with negative 
consequences such as avoidance of activities, less physical activity, falling, 
depression, decreased social contact and lower quality of life [21]. The effect of 
automatic fall detection units on the fear of falling has been studied by Brownsel 
et al. [22]. They conducted a study with community alarm users who had 
experienced a fall in the previous six months. At the end of the study, those who 
wore the fall detector appropriately reported that they felt more confident and 
independent, and considered that the detector improved their safety. One of the 
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conclusions of the study was that the fear of falling is likely to be substantially 
affected by user perception of the reliability and accuracy of the fall detector. 
If a fall event occurs and the system does not detect it, the consequences can be 
dramatic: the person can remain lying on the floor for a long time with all that this 
implies. In addition, the loss of confidence in the system may eliminate the benefits 
of the detector on the fear of falling. By contrast, if the system reports an excessive 
number of false activations, caregivers may perceive it as ineffective and useless, 
which may lead to device rejection. But robustness is not easy to achieve. 
Although several commercial products are available on the market, the fact is that 
they are not widely used and do not have a real impact on the elders’ lives yet [23, 
24]. Besides, the vast majority of their potential users do not know of their 
existence. However, when the concept of fall detection is presented, they find in 
it a great potential to improve their security and safety at home. For these and 
many more reasons, the number of studies on fall detection has increased 
dramatically over recent years. Unfortunately, there are not many reviews on fall 
detection. The work of Noury et al. [25], which appeared in 2008, can be 
considered the first one in this field. Shortly thereafter, Perry et al. [26] published 
a similar analysis. These studies provided a general overview of the fall detection 
status, but the latter has changed greatly since they were published, and the 
current fall detection trends have little in common with those of previous years. 
Mubashir et al. [27] is more recent, but it includes only 2 papers from 2011 and 
lacks later papers anyway, for instance many smartphone-based detectors. In this 
thesis we present a practical real time fall detection system which works on a 
smartwatch and it is tested with real data. 
In an attempt to minimize the above mentioned serious consequences of falling, 
various fall detection systems were developed over the last decade. Also elderly 
people desire to live at home, so new technologies, such as automated fall 
detectors, become necessary to support their independence and security. These 
systems are mainly based on video-cameras [28-30], acoustic [31, 32] or inertial 
sensors [33] and mobile phone technology [34-37].  
The main disadvantage of the fall detection systems based on video-cameras is 
the privacy issues that are triggered. People will not accept to be monitored 
because they consider it as something that invades in their personal life [29]. 
Specifying different types of falls help towards an understanding of the existing 
approaches. It also guides and contributes towards the design of new algorithms. 
Different scenarios should be considered when identifying different kinds of falls: 
falls from walking or standing, falls from standing on supports, (e.g., ladders, etc.), 
falls from sleeping or lying on the bed and falls from sitting on a chair. There are 
some common characteristics among these falls as well as significant different 
characteristics. It is also interesting to note that some characteristics of a fall also 
exist in normal actions, e.g., a crouch also demonstrates a rapid downward 
motion. Noury et al. [25] and Yu [39] reviewed principles and methods used in 
existing fall detection approaches. These are the only review papers on fall 
detection and their scope is limited, which prompts us to write a comprehensive 
survey of recent fall detection techniques. Existing fall detection approaches can 
be explained and categorized into three different classes to build a hierarchy of 
fall detection methods. Different methods under these categories are discussed 
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further in the following sections. Fall detection methods can be divided roughly 
into three categories: wearable device based, ambience sensor based and 
camera (vision) based. 
Common fall detection systems are based on a sensor detecting a strong vertical 
acceleration, launching an alarm when a fall event is recognized. More recent 
systems usually take into account other sensors able to detect the device's 
orientation in order to determine whether the user is lying or standing [34, 35]. 
In [34] the authors present a fall detection system called iFall which works on the 
smartphones of the users. They use a threshold-based algorithm. They use touch 
screen response and voice recognition providing a reliable interface with the user. 
iFall runs as discreetly as possible in a background service that constantly listens 
to the accelerometer. The activity is waking up only and only if a fall is detected 
and therefore other applications can run on top of iFall minimizing the memory 
consumption. A main advantage of iFall is the use of programmable cellular 
phones which is an existing technology. This choice reduces the cost for the 
patient and exploits the communication capabilities of the software features.  
As every other fall detection algorithm iFall tries to make the distinction between 
ADLS’s such as walking, running and standing and actual falls. By taking the root-
sum-of-squares of the three axials of the accelerometer which is the most 
informative sensor regarding the fall detection, the authors are able to determine 
the acceleration. The thresholds that they are using are adaptive and based on 
user provided parameters such as: height, weight, and level of activity. If the 
acceleration amplitude crosses the lower and upper thresholds in a set duration 
period as seen in Figure 3 a fall is suspected. Moreover in order to reduce the 
false positives the authors take the position of the user into account. A fall is only 
suspected if both thresholds are crossed within a specific duration of time and the 
position is changed. 

 
Figure 3: Example of a fall. 
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The procedure that takes place after a fall event is the following. Firstly, iFall tries 
to communicate with the user. If the user does not respond, iFall then attempts to 
contact members in his or her social network. If both of them fail or the social 
contact confirms a fall, the system alerts an emergency service. Finally the iFall 
application is designed to be simple to use. The number of buttons and options 
which are available to the user have been decreased as much as possible. 
Also in [35] the authors present a fall detection system called PerFallD which 
works on the smartphones of the users utilizing them as the platform for pervasive 
fall detection development. They benefit from the advantage that the smartphones 
provide, which is the combination of the fall detection and the communication 
components. Mobile phone-based fall detection systems can function almost 
everywhere since mobile phones are highly portable, all necessary components 
are already integrated therein, and their communication services have vast 
coverage. It is an acceleration-based detection approach whose only requirement 
is that a mobile phone has an accelerometer. 
The authors argue that elderly people may prefer to have a single phone with self-
contained fall detection functionality than to carry a separate fall detection device 
on their bodies. The user interfaces of PerFallD have large, lit key buttons that 
make their usage easy. There are no confusing menus and the operation of the 
system is simple and straightforward. 
The fall detection algorithm has been designed for the mobile phones that are 
equipped with an accelerometer. It is a threshold-based algorithm as well. They 
are using a combination of the acceleration of the phone combined with its 
orientation in a specific time window in order to detect a fall event. Firstly the 
application will load a profile for each individual user. The configuration of a user 
profile contains default sampling frequency, default fall detection algorithm and 
emergency contact list. Different profiles have varying degrees of rapidity. Then 
the main application works as a background daemon. If a fall is detected the 
phone iteratively calls and texts up to five contacts. The user is able to manually 
cancel the alarm as well. The thresholds of the algorithm have been set according 
to the training data obtained from extensive experiments. The thresholds are 
adjusted in order to reduce the false negatives and at the same time keep the 
false positive rate in an acceptable range. 
For the evaluation of their fall detection system they have collected data of falls 
with different directions (forward, lateral and backward, different speeds (fast and 
slow) and in different rooms (living room, bedroom, kitchen and outdoor garden). 
Of course they have collected data of ADL including walking, jogging, standing 
and sitting. They conclude that PerFallD has different performances when the 
phone is placed at different positions and the waist is the best position to attach 
the phone, with the performance of average false negative value being 2.67% and 
false positive value being 8.7%.  
In [36] the authors firstly focused on the data acquisition for building their fall 
detection algorithm. They constructed a mobile device that can send 
accelerometer data to a computer, using wireless communication.  With this 
mobile device, 200 daily activities and 34 falls were simulated by one young 
subject, aged 25. The data resulted from simulations were analysed in order to 
design the fall detection system. The algorithm processes data from a triaxial 
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accelerometer and computes the sum vector for the acceleration values on all the 
three spatial axes. They use 6 parameters in order to detect a fall. These 
parameters are the following. The first one, which is denoted as P is the 
acceleration sum vector (SV) peak value encountered during an ADL or a fall. The 
second parameter (B) is the base length of the triangle formed by the peak value 
and the 1000 mg horizontal axis. The third parameter is the ratio between the 
peak value and the base length and is denoted as R1. The fourth parameter is 
independent of the three mentioned before and it is the velocity after the impact, 
denoted as V. The fifth parameter is the ration between V and R1 and it is denoted 
as R2. The last parameter A is the activity level after the impact. The main idea 
behind their fall detection algorithm is that they are comparing the above 
presented six parameters with a threshold value. Based on this comparison the 
event is classified as a fall or as an ADL. 
The logic behind the fall detection algorithm based on these parameters is the 
following. Since most of the falls have a higher SV value than daily activities, the 
SV peak is the starting point for the distinction between falls and ADL’s. The 
overall accuracy of the system taking only this criterion into account was 51.28%. 
Therefore the second parameter, B is taken into account in order to achieve an 
increased accuracy of 71.37%. The way that the base length is taken into account 
is that it should be smaller in case of a fall compared to the case of ADL’s, because 
when a fall occurs there is only a short-term impact and the shock is quickly 
absorbed by the human body.  
Then the ratio between P and B increases more the accuracy of the fall detection 
system. Usually P is higher for falls and B is larger for daily activities. Therefore it 
means that R1=P/B has a high value for falls and a small value for ADL’s. A major 
improvement in the performance of the algorithm which is independent of three 
ones mentioned before is the post-impact velocity after a fall. The main difference 
between a fall and a daily activity like walking or running is the velocity after the 
impact should be small. By taking this metric into account the accuracy of the 
algorithm reached an accuracy of 97.86%. 
Their basic principle for fall detection was the following: In case of a fall, the 
velocity after the impact should be small, as the body suddenly stops moving and 
it remains still for at least a few moments, even if the person is conscious after the 
fall and tries to get up. One aspect that is very important for a threshold-based 
algorithm like this is the robustness of the thresholds used. For this reason, it is 
very important to have tested the fall detection algorithm on a data set with as 
many simulated falls as possible. 
Moreover they gave great attention in the response time after a fall event. They 
claim that this time can be improved with the help of an automatic fall detection 
system that could trigger an alarm whenever a fall is detected.  
Also, Pierleoni and others in [92] present a fall detection system consisting of an 
inertial unit that includes triaxial accelerometer, gyroscope and magnetometer 
with efficient data fusion and fall detection algorithms. The algorithm defines a set 
of acceleration and orientation thresholds for the distinction of fall events and 
activities of daily living. The system has been tested with volunteers who 
performed simulated falls, simulated falls with recovery and activities of daily 
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living. The orientation sensors are integrated within a compact module allowing 
the owner to move unrestricted. 
As depicted in Figure 4 the acceleration changes can be summarized in the 
following four phases. 

 
Figure 4: Acceleration changes during a fall event. 

1) Start: This is the phase where the subject loses the contact with the ground.  
2) Impact: The faller impacts the ground or other objects 
3) Aftermath: After the impact the faller usually remains without any motion on the 
ground. 
4) Posture: The body of the person that has fallen will be in a different orientation 
than before the impact. 
The authors propose a wearable fall detection device which is incorporated a 
MARG (Magnetic, Angular Rate, and Gravity) sensor to increase the robustness 
of the fall detection algorithm.  
The accurate measurement of orientation plays a critical role in human motion 
analysis. For the description of the posture of the human body they adopt Euler 
angles formalism [93], also known as Yaw, Pitch and Roll angles for representing 
the spatial orientation as depicted in Figure 5. The axes of fixed reference frame 
are denoted as X, Y, Z and are supposed to be rigidly attached to a rigid body. 
Yaw, Pitch and Roll angles are identified as the rotations around the Z, Y and X 
axis, respectively. Therefore they are used to represent the actual orientation of 
the human body. The orientation filter used in this fall detection algorithm 
combines accelerometer, gyroscope and magnetometer data obtained by the 
MARG sensor in order to provide a complete measurement of orientation relative 
to the direction of gravity and the Earth’s magnetic field. 
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The authors tested their algorithm with simulated falls and ADL’s. The 6 categories 
of falls and activities that have been studied are backward fall, forward fall, lateral 
left fall, lateral right fall, syncope and ADL. The study involved 10 volunteers (8 
male and 2 female) between 22 and 29 years old. Each of them repeated the 
scenarios by 18 times so that there are in total 540 tests. Their algorithm has an 
average accuracy of 90.37%, a sensitivity of 80.74% and a specificity of 100%. 

 
Figure 5: Spatial orientation. 

Finally, Aguiar and Rocha in [37] describe the implementation and evaluation of a 
smartphone-based fall detection system. The system uses data from the 
smartphone built-in accelerometer as input in a state machine that recognizes the 
fall stages in a sequential order. The features and thresholds of the acceleration 
values have been determined using decision trees, after a comparison of diverse 
machine learning classifiers. The system was evaluated using a validation 
protocol framework proposed by Noury et al. [23], and estimating sensitivity and 
specificity. 
More specifically their fall detection system has been designed to run as a 
background task in the smartphone in order to detect every possible fall event that 
will take place during the day. When a fall alarm is detected a sound alarm is 
automatically triggered. Moreover the system sends SMS and email notifications 
to the previously configured set of contacts. The flow of all the events that take 
place after the fall are depicted in Figure 6. 
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Figure 6: Application flow after falling. 

Taking into account that the application is continuously running throughout the 
day, only the tri-axial accelerometer is collected for the fall detection. The main 
purpose of this decision is the concern for the battery life of the application. It is 
very inconvenient to ask people to charge during the day the device that they will 
be using for fall detection. 
The authors present an algorithm based on a state machine which recognizes a 
fall only if all the stages of a fall event take place in the correct order as well. There 
are three states. The first one is the ‘Stable’ state where it is true when the user 
does not move at all. The second state is the ‘Unstable’ one which is true when 
the user is moving. If the user is in the ‘Unstable phase’ the system will check if 
the movement that he is doing causes a severe decrease of acceleration. If this 
is the case then it means that the user is starting a free fall movement which is 
one of the main stages of every fall event. Then the state of the user will change 
to ‘Falling’ and the system will be waiting for the impact on the ground. The phases 
of a fall event are given in the Figure 7. 

 
Figure 7: Fall stages. 

When the ‘Impact’ is recognized the system will launch an ‘Unconscious Watcher’ 
and return to the ‘Unstable’ stage and therefore the analysis of events never stops 
as there could be two sequential events similar to falls. The ‘Unconscious 
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Watcher’ state runs in parallel and shows if the user has recovered from a fall. If 
the user does not move for 10 seconds then a fall alarm is triggered. 
The validation of the algorithm took place through simulated falls and ADL’s from 
two groups. The first group consists of healthy young subjects who were willing to 
simulate falls. The second group was consisting of young and elderly volunteers 
who could perform the ADL’s. All the end-users had their smartphone in the 
trousers front pocket in a vertical position and/or hold to the belt (centrally or 
laterally). 
Finally the ultimate goal of the proposed fall detection system is to monitor the 
user throughout the full day and so the battery consumption of the application is 
a very crucial issue. After testing with three different Android devices the results 
that the authors obtained are the following: A phone can last more than one day 
with the application fully active. 
In [84] Li and others have designed a fall detection system for elderly people 
based on the Neyman-Pearson detection framework. An optimal detection 
threshold can be obtained which minimizes the false alarm rate and at the same 
time maximizes the fall detection rate. They use TeloW mote [85] with 
accelerometer as the detector, which is attached to the waist of the old people in 
order to capture the movement data. The accelerometer periodically samples the 
acceleration of the person and compares it to a predefined threshold. Once the 
threshold is exceeded an alert message will be delivered to the based station 
through multi-hops using 802.15.4/Zigbee network. For the fall detection the 
sampled acceleration data can either be processed locally at the sensor node or 
forwarded to the base-station where a more sophisticated analysis can take place. 
In [83] Cheng and Jhan present a machine-learning based fall detection system. 
They first introduce the sensor board they use for detection and communication 
followed by the overview of the system architecture. They propose a cascade-
AdaBoost support vector machine (SVM) classifier to complete the triaxial 
accelerometer-based fall detection procedure. Their method uses the acceleration 
signals of daily activities of volunteers from a database and calculates feature 
values in order to train their system. They used the UCI database for their 
experiments, in which the triaxial accelerometers are worn around the left and 
right ankles, on the chest and on the waist. The experimental results show that 
the tiaxial accelerometers around the chest and waist produce optimal results in 
terms of fall detection rate and the lowest false alarm rate.  
Finally, Hou and Li in [43] present an automatic fall detection system consisting of 
a triaxial accelerometer and a smartphone is evaluated. The system classifies raw 
sensor data by using an online algorithm. Based on physical characteristics of 
activity, four time-domain features are abstracted, which are all independent of 
the sensor orientation with respect to the body. A decision tree is used as a 
classifier running on smartphone. In the meantime, permitting control is adopted 
to save power by reducing data traffic. The accelerometer and Bluetooth unit are 
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bounded as a wearable unit and placed on the subject's waist/chest as seen in 
Figure 8. The accuracy of their algorithm is 92%. 

 
Figure 8: Wearable unit placed on the chest. 

2.2 Theoretical model and implementation 
Nowadays, simple smartwatches are very powerful and have a set of sensors that 
can be used and diverted from their original intent. More computing power and 
storage on these devices offer greater opportunities. In F2D we use the 
accelerometer sensor in the smartwatch to feed the fall detection algorithm, 
considering also the residual movement after the fall. Our main concern is the 
battery consumption and therefore we designed a threshold-based algorithm 
which uses only the accelerometer which is the most informative sensor regarding 
the fall detection. F2D is designed to consume the less possible battery so that it 
can last as much as possible without charging the smartwatch.  
F2D works on a smartwatch and therefore fixed on the wrist of the person. The 
fall detection algorithm is implemented in a background service and is running 
continuously. The user can operate his smartwatch as usual. F2D does not cause 
any interference with the normal usage of installed applications. The algorithm is 
threshold based like [36], relying on the captured data of the accelerometer of the 
smartwatch.  
The main functionality of F2D is to distinguish daily activities from falls. Activities 
of Daily Living (ADL) are normal activities such as walking, standing or running. 
The pattern of a fall must be different from the patterns of these activities. 
Acceleration data is sampled at 40 Hz from the 3-axis accelerometer sensor 
embedded in the Android smartwatch. Specifically, the sensor which provides 
acceleration information (linear acceleration) is used. We calculate the norm of 
the acceleration for each moment as described in Equation 1.  

݊݋݅ݐܽݎ݈݁݁ܿܿܽ = ඥݔଶ + ଶݕ +                      ଶ    (1)ݖ
We can observe the residual movement of the user right after falling as depicted 
in Figure 9. This movement is very crucial for the detection of a fall pattern in our 
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fall detection algorithm as it is described in the fall pattern section. We have 
analyzed a set of data with 150 different simulated falls from different people 
involved in the experiments from our project partner FST. This company has a 
long experience in creating and using innovative products adapted to people with 
disabilities. Thanks to this data we have improved the detection of possible falls. 
We observed that all falls follow one of the three patterns which we have called 
smooth, strong and sharp. They are given in Figures 12, 13 and 14 respectively. 
The main difference between them is the time interval of the residual movement 
after the fall. The three possible values of the time interval are the following: 
smooth=100ms, strong=300ms, sharp=500ms. More specifically, when a fall takes 
place, the peak that exceeds the upper threshold of the acceleration corresponds 
to the hit. After this, the pattern of the fall has a second peak, lower than the first 
one and exceeding the lower threshold. Finally, the acceleration returns to normal 
values. This behavior of the acceleration after the first peak represents the 
residual movement, as seen in Figure 9, that we take into account in the decision 
module for the characterization of a possible fall event as a real fall. 
 

 
Figure 9: Analysis of residual movement. 

 
Time window 
The time window is an essential part of the fall detection algorithm. We have 
defined a time window in which we are able to recognize a fall pattern. This 
window is set to 6 seconds, a value which has been selected after conducting 
experiments, using the set of data from simulated falls mentioned above. The 
main goal of the algorithm is the detection of all falls and at the same time the 
elimination of false positives. Building and testing our system we concluded that 



 18 18 

less than 6 seconds is not enough for the detection of all different types of falls. 
However, setting the window to higher values creates a bigger occurrence of false 
positives. 
Fall pattern 
The next step of the algorithm is the detection of a possible fall. Although in our 
previous work [70] the acceleration thresholds were fixed, in this thesis the 
thresholds are flexible. We have received data for a large number of falls and ADL 
from our industrial partner (FST) in order to train our fall detection system and 
therefore find the best adaptive thresholds that will provide the best sensitivity and 
specificity of the algorithm. More specifically we have received 150 fall events 
simulated by experts in falling and 150 events of ADL from elderly people. The 
events of ADL have been extracted from hours of recordings of elderly people 
doing their normal daily activities. Our partner was selecting specific events (time 
windows) during these hours of recordings that represent ADL that have a strong 
acceleration and can be similar to fall events. For example walking, running, going 
up the stairs, going down the stairs. Moreover, we used experts in studying and 
repeating falls in order to simulate falls because it was impossible to ask elderly 
people to fall. But our project partner FST was responsible to make sure that the 
acceleration patterns of falling that we acquired from the experts are identical to 
real falls of elderly people. They are experts in studying falls because they work 
for many years with elderly people that are vulnerable in falling and they have 
watched hundreds of videos of real falls reproducing them in their labs. Therefore 
we can claim that we have simulated falls as close as possible to real ones. 
By analyzing the real ADL from elderly people we were able to find a wide range 
of acceleration thresholds that keep F2D robust and therefore acceptable for the 
user. In order to consider an activity as a possible fall the two following conditions 
must be satisfied: 1) The acceleration must exceed an upper threshold which can 
take values from 10 to 18m/sec2 depending on the profile of the user. 2) After a 
flexible time interval the acceleration must exceed a lower threshold which can 
take values from 2 to 7m/sec2 depending again on the profile of the user. The time 
difference between the two peaks represents the rebound of the user after a fall. 
This rebound is very crucial for our adaptive threshold-based algorithm because 
the user wears the smartwatch on his wrist and therefore immediately after falling 
his wrist has a rebound that comes right after the big hit of falling. The intensity of 
this movement depends on the profile of the individual user. The time interval 
between the higher and the lower peak is flexible but cannot exceed the 0.5 
seconds which is the maximum length of the rebound after a fall according to our 
experiments. Making the time interval flexible instead of giving it fixed values like 
in our previous work [70] has led to an increase of the specificity of the algorithm 
of 3%. The ranges of the two thresholds have been selected based on the basic 
trade-off between detecting all falls and avoiding false positives. To the best of 
our knowledge this is the very first fall detection system that takes into account 
the residual movement of the user right after falling [76]. 
If the two conditions are satisfied during the time window of 6 seconds then a 
possible fall is suspected. We can see in Figures 12 - 14 that this time window is 
sufficient for the satisfaction of the two conditions that should happen in order to 
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detect a fall pattern. The full analysis of the fall pattern is given in the next flow 
chart (Figure 10). 
As soon as we are in the time window of 6 sec which is the time window of a 
possible fall event we check the values of the acceleration. If the acceleration is 
higher than the upper threshold (acceleration_t-interval > upper threshold) then we 
check after the interval of the 0.5 sec if the acceleration is higher than the lower 
threshold (acceleration_t > lower threshold). This check represents the residual 
movement of the user right after falling. If these two checks are successful then 
we increase the possible fall counter (possible fall counter ++), otherwise if one of 
the two condition is not satisfied we do not increase the possible fall counter. And 
we repeat these checks while we are inside the time window of the 6 sec. In the 
end of the time window we have a value for the counter. The last step is the 
comparison of the value of the counter at the end of the time window with the X, 
Y which are the lower and the higher acceptable values, for detecting a fall, of the 
counter respectively. We keep repeating this procedure for the following time 
windows.  

 
Figure 10: Fall detection algorithm. 
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Decision module 
The final step of the fall detection algorithm is the classification of the fall pattern 
as real. In this decision module a counter increases every time that both conditions 
of exceeding the thresholds are satisfied. We define X and Y to be the lower and 
higher acceptable values of the counter respectively. The critical range of the 
values of the fall counter is (X ≤ counter < Y). If (counter ≥ Y), then it is due to 
another activity being performed (e.g., running) which gives the difference in the 
acceleration values as we can see in Figure 15. Based on the real ADL data that 
we processed from elderly people we concluded that the value Y that gives the 
best specificity lays between [5-10] and not 14 comparing to [70]. On the other 
hand, if (counter < X) where X = 1 it means the user at most did a sudden 
movement with his wrist and so the threshold conditions were not satisfied (e.g., 
when a user was going down the stairs). The graphical explanation and the 
structure of the fall detection algorithm are given in the flow chart of Figure 10. 
Location 
The last module of F2D is the location module. This module makes our fall 
detection system very useful for nursing homes that host elderly people. It 
includes two different scenarios. The first one is the scenario of the user being 
outdoors. Then the fall detection system will work without any further filtering, 
minimizing the probability that we miss any fall that can be dangerous for the end-
user. 
The second scenario is the case that the end-user is indoors. Then using the exact 
location of the user in the building (e.g. an apartment) we can further filter the fall 
detection events. We use the iBeacon technology for this scenario, placing one 
beacon in each room of the apartment. iBeacon uses Bluetooth low energy to 
transmit a universally unique identifier picked up by a compatible app or operating 
system. The use of the location as contextual information leads to an increase of 
the specificity of the algorithm. Although it is the user that cancels the alarm, it 
makes F2D more robust and reduces the probability of losing a fall event and put 
elderly’s lives in danger. On top of this, knowing the precise location where the fall 
has occurred, it will decrease the reaction time of the caretakers. Therefore the 
fall detection system can work accurately and provide immediate help to elderly 
people and caretakers at nursing homes. 
1) RSSI and propagation model: In RSSI-based localization, the packets sent from 
the anchor beacon to the mobile device are used to map the RSSI to a distance 
by means of a propagation model. The correct calibration of the propagation 
model is crucial, since the way RSSI is transformed into a distance significantly 
affects the accuracy of the positioning. Currently, the widely used model for 
wireless signal propagation loss [96] is given in Equation 2. 

௜ݎ = ଴ݎ − ݃݋10݈݊ ቀௗ೔
ௗబ
ቁ+ ܺσ     (2) 

where ݀௜  and ݀଴ denote the real distance and the reference distance respectively, 
଴ݎ ௜ andݎ  denote the received signal power in dBm at the real and at the reference 
distance respectively, ܺߪ is a random variable representing the noise in the 
measured ݎ௜ and n is the path loss exponent, that depends on the transmission 
channel, the transmitter and the receiver. Using ݀଴ =1 meter as the reference 
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distance, and assuming ܺ  to be a Gaussian distributed random variable with zero ߪ
mean and variance ߪଶ , the simplified model is used as follows: 

r = ݌ −  (3)     (d)݃݋10݈݊
where r is the received signal power at the distance d, p is the received signal 
power of the receiver from a transmitter one meter away and n is again the path 
loss exponent 
2) Room dimensions and RSSI thresholds: Let S be the surface area of a room 
and h be the height of it. Assuming a square room as on Figure 11, the radii of the 
inner and the outer tangent circles are calculated with Equations 4 and 5 
respectively. 

 
Figure 11: Square room. 

 

௜௡ݎ = √ୗ
ଶ

    (4) 

௢௨௧ݎ = ටୗ
ଶ
    (5)  

Now using the Pythagorean theorem, the hypotenuses are calculated with 
Equations 6 and 7 respectively. 

݀௜௡ = ටℎଶ +  ୗ
ସ
   (6) 

݀௢௨௧ = ටℎଶ +  ୗ
ଶ
    (7)  
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Eventually by substituting the calculated distances of the hypotenuses into the 
propagation model of Equation 3, the inner and the outer thresholds are calculated 
with Equations 8 and 9 respectively. 

௜௡݈݀݋ℎݏ݁ݎℎݐ = p− ටℎଶ)݃݋10݈݊ +  ୗ
ସ
)   (8) 

௢௨௧݈݀݋ℎݏ݁ݎℎݐ = p− ටℎଶ݃݋10݈݊ +  ୗ
ଶ
     (9)  

3) RSSI classification and localization algorithm: For every Bluetooth beacon 
placed in a room, the ݐℎݏ݁ݎℎ݈݀݋௜௡ and ݐℎݏ݁ݎℎ݈݀݋௢௨௧ are calculated as described 
previously. Based on their RSSI readings, they fall into one of the following 
categories. The Strong category (S) when RSSI >ݐℎݏ݁ݎℎ݈݀݋௜௡, the Medium 
category (M) when ݐℎݏ݁ݎℎ݈݀݋௜௡ > RSSI > ݐℎݏ݁ݎℎ݈݀݋௢௨௧, the Weak category (W) 
when ݐℎݏ݁ݎℎ݈݀݋௢௨௧ > RSSI and the Not found category (N) when there is no 
reading for a specific beacon. The ordering of those categories based on their 
significance is the following: S > M > W > N. 
For any given moment, for each beacon, a set of its N latest RSSI readings is 
averaged, so that each beacon can be classified into one of the aforementioned 
categories. The most significant non empty category is then picked. If only one 
beacon falls into this category, then the procedure ends and presence is assumed 
in the room that this specific beacon was placed in. When multiple beacons fall 
into this category, then a score is calculated for each beacon that is equal to the 
difference between its measured RSSI and its lower threshold. 
The lower threshold is equal to ݐℎݏ݁ݎℎ݈݀݋௜௡  when S is the most significant non 
empty category,  ݐℎݏ݁ݎℎ݈݀݋௢௨௧  when M is the most significant non empty category 
and when W is the most significant non empty category it can be a global minimum 
of the RSSI readings (e.g. -100) selected by the user. Then the beacon with the 
highest score wins. In the final case of a draw, the beacon that is placed in the 
biggest room wins. 
To summarize, the location approach described above is an easy to deploy 
Bluetooth-based indoor positioning system with room-level accuracy. The system 
only requires the sizes of the rooms and Bluetooth beacons placed in the center 
of each one of them. Then the presented algorithm computes two RSSI thresholds 
for each room, and based on them, categorizes the RSSI readings and finally 
estimates a room location. 
Emergency actions 
If the algorithm decides that a fall has happened then the background service 
notifies the main application, which in turn sends a message to the caretakers. 
The smartwatch communicates directly with the caretakers. In case of an alarm 
the loudspeaker of the watch is automatically turned on at a high volume and calls 
from caretakers are automatically answered. This allows the user to communicate 
even in uncomfortable positions that could result after a fall. One key innovation 
of F2D is the fact that it takes into account the behavior of the user after a fall 
event. Based on the residual movement of the user after the fall we categorize the 
falls in three types. B1: No movement at all, B2: Small amount of movement after 
the fall event, B3: Back to normal activity after the fall event. It is clear that, if after 
a fall the user does not move at all, then the caretakers should immediately be 
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informed and therefore the alarm will be triggered directly. On the other hand, if 
the user is able to fully recover after a soft fall event, then he is able to cancel the 
alarm and therefore not disturb the caretakers for no reason. F2D will be released 
on the market and it requires the least possible false alarms. 
There are two main advantages of using this categorization of fall types. The first 
one is the increase of the specificity of the algorithm and so it makes it the system 
more robust. The second one is linked to the first and comes as a result that F2D 
aims to be available on the market. After making tests with end-users from FST 
and taking into account their feedback, we concluded that giving the opportunity 
to the user to cancel the alarm in case of B3 type of fall will make F2D more user 
friendly. 
 

 
Figure 12: Smooth fall. 

In Figure [12] we have a smooth fall which means that after the big hit of the fall 
event, the residual movement of the user comes 100msec after the hit.  
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 Figure 13: Strong fall.  

In Figure [13] we have a strong fall which means that after the big hit of the fall 
event, the residual movement of the user comes 300msec after the hit.  
 

 
Figure 14: Sharp fall.  

In Figure [14] we have a sharp fall which means that after the big hit of the fall 
event, the residual movement of the user comes 500msec after the hit.  
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Figure 15: Running. 

Using a single smartwatch as a device for running the F2D application satisfies 
the condition of ease of installation of the fall detection system. The context 
awareness that the location module added to the fall detection system is very 
important for the final scope of this application. Since we are targeting the care of 
elderly people who are in a nursing home, knowing the location of the user after 
a fall is very important. The caretaker will know in which room the elderly has fallen 
and therefore they will be able to immediately provide the help that this person 
needs. The latter has been achieved through the location module that has been 
included in F2D. By knowing the precise location where the fall has occurred, it 
will decrease the reaction time of the caretakers. Therefore the fall detection 
system can work accurately and provide immediate help to elderly people and 
caretakers at nursing homes. We use the iBeacon technology for this scenario, 
placing one beacon in each room of the apartment. iBeacon uses Bluetooth low 
energy to transmit a universally unique identifier picked up by a compatible app 
or operating system [47]. 
Finally, the main innovation of F2D is that we have used real Activities of Daily 
Living from elderly people, testing our system in real life situations. Also we used 
data with simulated falls from experts (FST) in reproducing falls simulated like 
coming from elderly people. 
Evaluation 
For the evaluation of the reliability of F2D we performed a series of experiments. 
We evaluated our fall detection algorithm using a set of falls recorded by experts 
in studying and repeating falls hired from our industrial partner FST. This set 
consists of 384 simulated falls. We should clarify that these falls have been 
simulated by experts and therefore they are as similar as possible to real falls from 
elderly people. As we already have highlighted, we used experts in studying and 
repeating falls in order to simulate realistic falls because it was impossible to ask 
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elderly people to fall. These people were working under the guidance of our 
project partner. Therefore we can claim that we have falls as close as possible to 
real ones. 

 
Figure 16: Walking. 

 
Figure 17: Going up the stairs. 
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Figure 18: Going down the stairs. 

The main innovation is that we evaluated F2D with real ADL from elderly people 
(412 files) which give us the opportunity to test our system in real life conditions 
of the target population group. These 412 files have been extracted after many 
hours of recordings, representing specific time windows from ADL that have 
similar acceleration patterns with falls. The set of data that we are using is much 
larger comparing with other systems [36] where only 34 simulated falls and 200 
daily activities simulated by a single young person were used. Our real data has 
been collected from 6 elderly people with different profiles as reported in Table 2. 
We must highlight that the real data that we have received from our project partner 
FST are totally anonymous and therefore the anonymity and privacy of the people 
that were involved in the experiments is protected. 

Age Height (cm) Weight (kg) 
74 158 53 
83 165 60 
86 160 59 
86 175 65 
87 156 100 
93 155 50 

Table 1:Different profiles. 

For the evaluation of the experiments, sensitivity and specificity measures that 
have been described by [97] are employed. 
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Figure 19: Sensitivity and specificity using real data from partner. 

Sensitivity is defined as the portion of the falls that are detected as falls with the 
proposed algorithm. Specificity is the portion of the nonfall events (ADL) that do 
not lead to false alarms. ܵ݁݊ݕݐ݅ݒ݅ݐ݅ݏ and ܵݕݐ݂݅ܿ݅݅ܿ݁݌ are given by 

ݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ = ୘୔
୘୔ା୊୒

  (10) 

ݕݐ݂݅ܿ݅݅ܿ݁݌ܵ = ୘୒
୘୒ା୊୔

  (11) 

where true positive (TP) is the detection of a fall by the system when it occurred, 
false positive (FP) is the detection of a fall when it did not occur, true negative 
(TN) is the system not detecting a fall when a fall did not occur, and false negative 
(FN) is the system not detecting a fall when it occurred. 
The real ADL were the following: walking, going up the stairs, going down the 
stairs, as seen in Figures 15-18. Based on these facts, it can be noted that the 
accuracy of our algorithm is quite high. We achieved a true positive rate 
(sensitivity) of 93.48% for the set of simulated falls and a true negative rate 
(specificity) of 98.54% for detecting the real ADL from the elderly people. The 
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average of sensitivity and specificity represents the accuracy of the system which 
is equal to 96.01%. The analytical results are presented in Figure 19. 
For the quantitative results analysis, we have created a tool which gives us the 
opportunity to run the fall detection algorithm against the data that FST has 
provided. Based on this tool we had the opportunity to systematically test all the 
improvements made to the algorithm. 
We conclude that the F2D system works reliably. Some false alarms were 
detected when the testers performed sudden movements with residual activity 
trying to simulate the same pattern of a fall event.  
Based on the results that we have obtained by testing our fall detection system in 
real life scenarios, the commercial deployment of F2D is the natural next step. 
F2D will enlarge the product range the FST is currently providing to their users. 
Since they work directly with end-users and with end-user organizations, they are 
able to personalize the system according to the user profile and environment, thus 
providing a much more accurate and safe system than the generic solutions 
available in the market. The final application gives the opportunity to the user to 
select the parameters that correspond to their profile and trade-off between fall 
detection and false alarms as depicted in Figure 20. 
More precisely if the user wants to detect a percentage of 99% of the falls, they 
are able to decrease the thresholds of the final application. This means that they 
will have some more false alarms and they should sometimes have to cancel the 
alarm. In the final application these settings will be abstracted to a single 
“sensitivity” control, which maps discrete sensitivity levels to particular settings of 
the thresholds and counters. 

 
Figure 20: Settings. 



 30 30 

 
 
Indoor localization evaluation 
1) Experiment methodology: For our experiments we used the Kontact.io Smart 
Beacons, set in their default configuration settings (TX Power = 3 and Interval = 
350 ms). We gathered RSSI readings at grid locations in each room throughout 
the floor. At each point, we collected a total of 209 RSSI readings for each beacon, 
one per second. The receiver was placed on a non-conducting surface at roughly 
70 centimetres from the floor. 
2) Propagation model calibration: In order to construct the specific propagation 
model for our application, we placed a Bluetooth beacon in the center of a corridor. 
Then we took multiple measurements at several points with a known distance from 
the beacon, ranging from 0.5 to 7 meters. By constructing the line of best fit 
described by Equation 3, the estimated values of the propagation model 
parameters were p = -70:09 and n = 1.95. For our tests we also have empirically 
set N = 10, where N is the size of the set of the latest RSSI readings of each 
beacon that is averaged. 
3) Deployment in two locations: We have deployed our indoor positioning system 
in two different locations. The first is a typical office environment housing eight 
people (Figure 21), composed of three rooms. The area is divided by thick 
concrete walls and wooden doors. The second is a house environment composed 
of five rooms of different sizes and one corridor (Figure 23). Due to the corridor 
being oblong, we have divided its total area into two equal ones, so that we can 
abstractly consider that the house is composed of a total of seven rooms. The 
area is divided by thin concrete walls and wooden doors. In both figures the circles 
mark the locations where measurements were taken along with an ascending 
number. Each room is also represented by a letter. 
4) Comparison: We compare the performance of our indoor positioning system 
with room-level accuracy with the one without thresholds. That is a system that 
only considers the magnitude of the RSSI readings and assumes presence in the 
room with the highest one. 
5) Office environment: In this experiment RSSI readings were collected at 27 
different points (9 for every room) as depicted by the circles in Figure 21. The 
green points are the ones for which the accuracy was improved, while for the red 
ones the accuracy was deteriorated. Table 3 presents the locations in the office 
for which accuracy has changed with the introduction of the localization algorithm 
and Table 4 presents the averaged accuracy per room. As seen in Figure 22, the 
average accuracy of the points of room B has increased by 1.89 % and the 
average accuracy of the points of room C has increased by 3.72 %. 

Point Accuracy change (%) 
13 +13.5 
15 +1 
16 +2.5 
19 +36.5 
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20 -3.5 
25 +0.5 

Table 2: Locations in the office with an accuracy change. 

6) Home environment: In this experiment RSSI readings were collected at 63 
different points (9 for every room) as depicted by the circles in Figure 23. Once 
more, the green points are the ones for which the accuracy was improved, while 
for the red ones the accuracy was deteriorated. Table 5 presents the specific 
locations in the house for which accuracy has changed with the introduction of the 
localization algorithm and Table 6 presents the averaged accuracy per room. As 
seen in Figure 24, the average accuracy of the points of room A has increased by 
0.78 %, of room B by 1.56 %, of room E by 2.94 %, of room G by 1.67 %, while 
the average accuracy of the points of room D has deteriorated by 0.17 %. 

Room Accuracy without 
the algorithm (%) 

Accuracy with the 
algorithm (%) 

Accuracy change 
(%) 

A 100 100 0 
B 89.94 91.83 +1.89 
C 87.94 91.67 +3.72 

Table 3: Per room accuracy comparison in the office. 

 
Figure 21: Office evaluation area and targeted locations. 
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Figure 22: Improved accuracy in the office evaluation area. 

To sum up, after comparing it with the no-threshold approach, we saw an average 
improvement of room estimation accuracy of 9% for the points that the accuracy 
was improved and an average deterioration of room estimation accuracy of 
1.375% for the points that the accuracy was deteriorated. 

 
Figure 23: House evaluation area and targeted locations. 
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Figure 24: Improved accuracy in the house evaluation area. 

Point Accuracy change (%) 
2 +0.5 
3 +0.5 
9 +6 

11 -0.5 
16 +14.5 
32 -1 
34 -0.5 
40 +2 
43 +21 
44 +3.5 
62 +15 

Table 4: Locations in the house with an accuracy change. 
 

Room Accuracy without 
the algorithm (%) 

Accuracy with the 
algorithm (%) 

Accuracy change 
(%) 

A 90.28 91.06 +0.78 
B 91.78 93.33 +1.56 
C 100 100 0 
D 98.22 98.06 -0.17 
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E 78.22 81.17 +2.94 
F 84.67 84.67 0 
G 81.28 82.94 +1.67 

Table 5: Per room accuracy comparison in the house. 

2.3 Discussion and comparison 
In this thesis we propose a fall detection system (F2D) which works on a 
smartwatch, therefore completely independent from a base station. Using such a 
device is less stigmatizing for the user. In addition, it can be offered for less than 
half of the cost of existing systems on the market. Our system meets the 
requirements of reliability, ease of installation and restriction of false positives [41] 
which are essential for a properly built fall detection system. 
F2D works on a smartwatch and therefore fixed on the wrist of the person. We 
have avoided the disadvantages of He and Li at [42] where the solution of the 
waist-mounted smartphone they provide is not feasible for two reasons: 1) 
Normally people do not wear their phones on the waist but in their pockets. 2) The 
system will be working only when the smartphone is mounted on the waist and 
not at other times [42]. Other problems such as the usage of intrusive devices 
exist in [43] and [44], where the accelerometer and Bluetooth unit are bounded as 
a wearable unit and placed on the subject’s waist or chest. 
We decided to use a threshold based algorithm and not a machine learning 
approach like [37] as it is less complex and therefore requires the lowest 
computational power [45]. In the typical scenario, the user will use the application 
on his smartwatch normally during the day without the requirement of charging it 
much more than usually. Since the fall detection system will run continuously, we 
should optimize the battery consumption of the device. Therefore, only the tri-axial 
accelerometer signal is used since it is the most informative sensor regarding the 
fall detection. 
Unlike computer vision techniques, the privacy issues can be eliminated by the 
usage of ambient sensors. It is inexpensive and simple. In addition these types of 
sensors are more sensitive to noise. Thus, it is not suitable for living environments. 
Monitoring more number of people is also possible with this approach, but it 
requires an immense amount of domain research. It is well suited for indoor 
applications [38]. But a robust fall detection system should work indoors and 
outdoors as well. The fall detection system which is presented in this thesis, called 
F2D, works on an independent smartwatch and therefore it protects the users 
indoors and outdoors. The user is able to use normally his smartwatch and at the 
same time a possible fall event will be detected from F2D. 
Even though fall detection has received significant attention in recent years, it still 
represents a challenging task for two reasons. First, there are several everyday 
fall-like activities that are hard to distinguish from strong falls. Most of the current 
approaches define a fall as having greater acceleration than normal daily 
activities. However, focusing only on a fast acceleration can result in many false 
alarms during fall-like activities, such as sitting down quickly or lying down on a 
bed quickly. The second reason is that not all falls are characterized by a fast 
acceleration of the wrist.  
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The detection of soft falls should be an intrinsic part of creating a successful fall-
detection system. There are several approaches that can be used for fall-detection 
such as using the camera like the research done by Koray Ozcan [40]. In Ozcan’s 
study the camera is attached to the body. So, if there is a change in the orientation 
of the camera it can be concluded that the person fell. His research obtained quite 
good results, that is 86.66% accuracy. Nevertheless, some improvements must 
be considered since there are still a lot of false positives. 
Comparing F2D with iFall [34] the main advantage of our solution is that our fall 
detection algorithm works on a smartwatch that each end-user wears on his wrist. 
Therefore we have a consistent fall pattern. On the other side in [34] it is difficult 
to convince users to mount the phone to various body parts in order to improve 
fall detection rate. Instead, the software must dynamically adjust to different 
methods of carrying the phone (e.g., in the purse, pants or shirt pocket, or on a 
belt or neck clip). This requires the software to classify acceleration parameters 
of general use to identify the correct parameters for the fall detection logic. 
Moreover the authors of iFall do not provide any real data and the corresponding 
sensitivity and specificity of their algorithm so that we can compare it with our 
results. 
Comparing F2D with PerFallD [35] the main advantage of our solution is like 
comparing with iFall that the fall detection algorithm is running on a smartwatch. 
The device is attached on the wrist of the person and therefore we have a 
consistent fall pattern. Moreover if we compare their best case scenario where the 
smart-phone of the user is attached on the waist they receive a percentage of 
8.7% false negatives when we receive a percentage of 1.45%. Also although our 
false negative is higher (6.52%) than in PerfallD (2.67%) the balance between 
false positives and false negatives is better for F2D comparing with PerFallD. Also 
we should take into account that we compare their best case scenario and not the 
scenario where the phone is on the wrist of the user like in our case where the 
user wears his smartwatch. Moreover we have tested our system with elderly 
people whereas they have tested their system with young adults. 
Comparing F2D with the machine-learning based approach of Cheng and Jhan at 
[86] using a self-constructing cascade Adaboost-SVM classifier we can make the 
following conclusions. Firstly F2D works on a smartwatch being as less invasive 
as possible for the end-users, whereas their solution forces the users to wear 
triaxial accelerometers around their ankles and around their chest and waist. 
Moreover as we have already mentioned a machine-learning based fall detection 
solution will destroy the battery of the smart device of the user forcing him to 
charge it during the day. 
Comparing F2D with [84] we observe that F2D is a completely autonomous fall 
detection system whereas the Neyman-Pearson based system needs a base 
central for further analysis of the possible fall events. Moreover in [84] the testers 
were young adults from their lab whereas in our case the falls have been simulated 
from experts and the ADL data come from elderly people. 
Finally comparing F2D with the fall detection system of Hou and Li [43] we make 
the following observations. F2D works on a smartwatch and therefore fixed on the 
wrist of the person instead of the waist-mounted smartphone solution they 
provide. Their solution is not feasible for two reasons: 1) Normally people do not 
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wear their phones on the waist but in their pockets. 2) The system will be working 
only when the smartphone is mounted on the waist and not at other times. 
Moreover F2D achieves a higher accuracy of 96.01% comparing with their 
accuracy of 92%. 

2.4 Personal contribution 
In the first publication [70] related to the fall detection system is highlighted the 
innovative fall detection algorithm. The latter takes into account the residual 
movement of the user to increase the fall detection accuracy and summarizes the 
architecture and the implementation of the fall detection system working on a 
smartwatch. The user can operate his smartwatch as usual. F2D does not cause 
any interference with the normal usage of installed applications. The algorithm is 
threshold based like [29], relying on the captured data of the accelerometer of the 
smartwatch. We decided to use a threshold based algorithm and not a machine 
learning approach like [37] as it is less complex and therefore requires the lowest 
computational power [71]. In the typical scenario, the user will use the application 
on his smartwatch normally during the day without the requirement of charging it 
much more than usually. Since the fall detection system will run continuously, we 
should optimize the battery consumption of the device. Therefore, only the tri-axial 
accelerometer signal is used since it is the most informative sensor regarding the 
fall detection. Based on the reliability of the fall detection and the restriction of 
false positives, which are guaranteed by the fall detection algorithm, we have built 
a system which meets the requirements for deployment and use. 
The second F2D publication [72] builds on top of the first one and takes into 
account the after falling activity and the location of the user as well. Based on the 
residual movement of the user after the fall we categorize the falls in three types. 
B1: No movement at all, B2: Small amount of movement after the fall event, B3: 
Back to normal activity after the fall event. It is clear that, if after a fall the user 
does not move at all, then the caretakers should immediately be informed and 
therefore the alarm will be triggered directly. On the other hand, if the user is able 
to fully recover after a soft fall event, then he is able to cancel the alarm and 
therefore not disturb the caretakers for no reason. F2D will be released on the 
market and it requires the least possible false alarms. This combination of the 
after fall activity and the location of the user after falling, it eliminates the false 
positives and gives a better accuracy to the algorithm.  
Moreover, by testing with partially real data provided by our industrial partner FST, 
we present a fall detection system ready to be deployed on the market. To the 
best of our knowledge this is the first fall detection system which has been tested 
with real data of elderly people. This is a big innovation because the majority of 
the fall detection systems have been tested with simulated falls and ADL activities 
of young adults.  
In our third publication related to the fall detection [73] the iBeacon technology is 
used in order to be able to know the precise location where the fall has occurred 
and therefore decreasing the reaction time of the caretakers. By being able to 
locate the user after falling with room-level accuracy makes our fall detection 
system very useful for nursing homes. The carers will know in which room the 
elderly has fallen and therefore they will be able to immediately provide the help 
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that this person needs. Since minimal cost and setup process for the end user 
were the requirements of the localization system, we used the minimum amount 
of Bluetooth beacons, that is one Bluetooth beacon per room, and we opted to 
develop a more sophisticated algorithm for room detection. 
The papers that compose this thesis are product of deep research in the field of 
fall detection. The author of this thesis was the first author in these papers. The 
innovative ideas and the algorithms that are presented in these papers have been 
developed from the author of the thesis. He has created all the models and has 
run all the experiments that had been described in the publications. Moreover he 
was the one that designed and tested all the innovative algorithms for the fall 
detection. He created the fall detection system and added all the components 
described above that enhanced the accuracy of the system. The co-authors of the 
papers were participating mostly in the coding support and in the quality of the 
English of the papers. 
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3. Stress detection 
Thanks to the knowledge that we acquired by extracting useful information from 
the sensors of smart devices and more specifically by detecting falls from a 
smartwatch, we enhanced our know-how analyzing and extracting patterns from 
raw sensor data. The next implementation of our expertise and second main 
element of this thesis is the detection of stress patterns by analyzing smartphone 
data. 
Stress is a mental condition that everybody experiences in his life, sometimes 
even daily. In today’s society working environments are becoming more stressful 
and people working in these environments become prone to various illnesses. 
Stress symptoms may be affecting people’s health, even though they might not 
realize it [48]. People may think illness is to blame for that nagging headache, their 
frequent insomnia or their decreased productivity at work. But stress may actually 
be the culprit. Due to all these negative effects, it can be assumed that early 
assessment of stress condition, and early suggestions on how to reduce it, may 
reduce its overall impact and lead to improved health state of individuals [49]. 
Stress, depression and anxiety are included into work-related health problem. In 
Europe, in 2007 those health problems where in the third rank after back pain 
problems and other muscular problems with a percentage of 14%. Data was 
collected in different European countries with survey addressed directly to worker 
aged from 15 to 64 years old [40].  
The problem of stress detection has been tackled with different approaches. 
However, former works can be divided into two different groups, depending on the 
use of physiological signals or other behavioral characteristics.  

3.1 State of the art 
The autonomic nervous system (ANS) regulates the body’s major physiological 
activities, including the heart’s electrical activity, gland secretion, blood pressure, 
and respiration. The ANS has two branches: the sympathetic nervous system 
(SNS) and the parasympathetic nervous system (PNS). The SNS mobilizes the 
body’s resources for action under stressful conditions. In contrast to the SNS, the 
PNS relaxes the body and stabilizes the body into steady state [82]. 
Cortisol, or as frequently called "the stress hormone", is released in response to 
fear or stress by the adrenal glands. This is the reason why, the obvious way to 
measure stress is by measuring the cortisol levels in the body. There have been 
many studies measuring the cortisol levels and some of them do so either in the 
saliva [46] or in the interstitial fluid [47]. The problem with those methods though, 
is that they are often invasive for the user and the used sensors are not most of 
the times commercially available in order for such a product to be useful to the 
general public. Other methods and studies for measuring emotions and stress are 
using electroencephalogram (EEG) bands [48], the respiration rate [49] or 
computer vision [50, 51].  
Many technologies have been developed to measure or detect the stress level. 
Methods based on biological signals include blood pressure [52], heart rate [52], 
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heart rate variability [53], skin conductance [54], cortisol [54] and pupil diameter 
[56]. 
In the work of Guo and others [86] is presented a pervasive and unobtrusive 
system for sensing human emotions which are inferred based on the analysis of 
the Galvanic Skin Response (GSR). They explore the characteristics of temporal 
variations of humans GSR signal that indicates different types of human emotions. 
They take into account that different people exhibit heterogeneous characteristics 
in their emotion patterns. Therefore they perform emotion classification for each 
experiment subject individually. 
The basic idea of emotion sensing is to explore the characteristics of temporal 
variations of humans GSR signal. Figure 25 shows some examples of the GSR 
signals from various emotions.   

 
Figure 25: Raw GSR signals for human emotions. 

The system architecture is the following. Firstly the authors propose a quadrant 
model to represent the four basic categories of emotions. These are amusement, 
fear, relax and sadness. Then they choose video clips of different themes from 
social media websites in order to arouse the human emotions. They have chosen 
17 video clips for each category of emotions which include prank videos, thrilling 
trailers of movies, soft music and movies with bad ending. The ground truth comes 
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from the labels of these movies. The next step is the removal of the noise from 
the GSR signals that have been collected in order to ensure high accuracy of 
emotion classification. Finally they rescale and resample the data into the same 
length so that they can perform comparison on top of them. Different methods of 
classification accuracy are tested and the overall classification accuracy is the 
average value of all the experimental subjects. The extracted features from the 
affective GSR signal sequence were verified to be effective in emotion 
classification within the subject-dependent context. The future work of the authors 
focuses on developing the subject-dependent mobile applications to monitor the 
personal emotion changes at real-time with an online learning strategy.  
Moreover the analysis of the fluctuations in heartbeat intervals, which is known as 
heart rate variability (HRV) analysis, is a frequently studied physiological rhythm. 
Kumar and others at [87] have performed a stochastic fuzzy analysis method of 
heartbeat intervals in order to quantify the stress level of people. Their method 
has been implemented in a mobile telemedical application. They have included in 
their experiments 50 users whose stress scores were assessed at different times 
of the day. They evaluate their system by comparing predicted stress score values 
with the subjective rating scores coming from the users. 
The main problem that the researchers of this study have addressed is how is it 
possible a given 5-minutes long series of heartbeat intervals to be evaluated for 
the estimation of stress of an individual on a numerical scale from 0 to 100. The 
analysis method should meet the following requirements:  
1) handling the uncertainties in modeling complex relationships between observed 
heart rate signal and respective stress level 
2) the analysis method should be robust against noise and missing physiological 
data 
3) it should be suitable for a real-time operation in the stress telemonitoring 
system. 
The authors consider a stochastic fuzzy modeling-based approach in order to 
solve the above mentioned problem. In general the stochastic fuzzy systems have 
been introduced to integrate randomness and fuzziness for the approximation of 
stochastic processes [94]. Their stress prediction model has been implemented 
on an e-health system called the eHealth–MV system developed jointly with 
Infokom GmbH, Germany. This eHealth-MV system provides mobile telemedical 
applications related to stress and fitness monitoring. The system that acquires the 
data is based on a mobile phone and a sensor electronic module with a special 
chest belt for acquiring as many as possible physiological parameters. 
The experiments perform a 24-h monitoring of 50 subjects in e-health setting. The 
testers were asked at different times during the day to input on their phone their 
subjective stress score based on how they were feeling the last 5 minutes. The 
stochastic fuzzy analysis-based approach is general to evaluate any biomedical 
signal for functional state assessment. 
In [91] Choi and Ahmed present a wearable sensor platform to monitor a number 
of physiological correlates of mental stress. They discuss tradeoffs in both system 
design and sensor selection to balance information content and wearability. They 
propose a new spectral feature that estimates the balance of the autonomic 
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nervous system by combining information from the power spectral density of 
respiration and heart rate variability. For the assessment of the effectiveness of 
their solution they collected experimental data from two experimental conditions: 
mental stress and relaxation. The mental stress condition consisted of a number 
of tests. These were dual tracking, memory search, mirror tracing, Stroop color 
word test and public speech. On the other side the relaxation condition consisted 
of deep breathing exercise. 
The authors of this study have developed a minimally invasive wearable sensor 
platform which allows monitoring a number of physiological indicators of stress. 
The system as seen in Figure 26 weights 277 grams and allows uninterrupted 
operation in excess of 13 hours. It can combine information from multiple 
physiological signals into a single index of stress. The logistic regression results 
prove that this HRV index has the highest predictive power. 

 
Figure 26: A tester wearing the full sensor suite. 

Finally, Yoon and others at [88] present a human stress monitoring patch with 
small skin contact area and high flexibility to enhance wearing comfort of the 
patch. The stress monitoring patch consists of three layers: a skin contact layer, 
an insulation layer and a pulse wave sensing layer as depicted in Figure 27. The 
stress monitoring performance of the three individual sensors integrated in the 
patch are experimentally characterized in the human physiological ranges. The 
dimensions and the performance of the patch are designed to detect human 
physiological signals, including skin temperature, skin conductance and pulse 
wave. The authors have taken into account for the design of the patch that people 
feel the wearable devices are comfortable when they wear the less number of 
devices, small and light devices, and highly flexible devices. The described patch 
satisfies all these conditions since the three sensors are integrated in a single 
multi-layer structure the number of devices and the skin contact area of the patch. 
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Figure 27: Three layers of flexible human stress monitoring patch. 

Behavioral characteristics 
On the other side, smartphones have become ubiquitous and are transforming 
every aspect of daily life, including the way people track their health. Currently 
there are many health applications available, running on mobile platforms, 
including some developed by major companies in the smartphone industry. Those 
applications either act as a diary, allowing users to manually enter data regarding 
the various aspects of their well-being, or actively record data from the 
smartphone itself and from electronic accessories and wearables. 
Several researches have already been conducted to detect stress using biological 
signals. The vast majority of them have been conducted though in laboratory 
settings. This is the limitation that in our solution we overcome.  
In the work of LiKamwa and others [79], their vision is a smartphone service, called 
MoodSense, which can infer its owner’s mood based on information already 
available in today’s smartphones. The service will fundamentally enhance 
context-awareness by providing clues about mobile users’ mental states. They 
report early results from studying 25 iPhone users in the field and the correlation 
between their mood and phone usage. They show that user mood can be inferred 
into four major types with an average accuracy of 91%. This is achieved using 
only three weeks of training data and simple smartphone usage statistics. The 
results, though preliminary, strongly suggest the feasibility of mood inference 
without using the power hungry and socially invasive microphone and camera. 
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The authors conclude that smartphone usage indicates user mood. The users 
prefer different applications and communicate with different people depending on 
their mood. There are used six pieces of usage information (SMS, email, phone 
call, application usage, web browsing and location). They highlight that how the 
usage of the smartphone indicates the mood of the user is very personal and 
therefore the accuracy of mood classification is improved to 91% from 61% when 
it is based on the data of the same user. The classifier must be trained with the 
same user’s data. 
Before the field study the authors conducted a two-part focus group study with the 
participants in order to observe their intuition of automatic mood inference. The 
first part was to ask the users to report the way their smartphone usage changes 
depending on their mood. The second part was to ask the participants how they 
would share their mood. More specifically the users were invited to answer on 
how they would publish their mood, with whom they would share their mood, when 
they would like others to see their mood, whose moods they would be interested 
to see, how they would like their phone to automatically adapt to their mood and 
how sharing their mood would affect their life. All of the participants indicated that 
they would like to share their mood within certain social circles like their friends 
but they would not want people to see their current mood when they were in 
extremely bad moods and they did not want to talk about it. Moreover all of the 
participants were interested in seeing others’ mood and especially the mood of 
their friends. 
The next step is the field study where real-world data are collected for the study 
of the correlation between mood and smartphone interactions. The users are 
asked to input their mood at least four times a day into the mood input application 
running on their smartphones. At the same time the authors use the LiveLab 
iPhone Logger [95] to gather relevant information in order to form the mood 
models. Web browsing, application usage, phone calls, emails, messages, 
calendar entries and location changes are collected as user behavior features. 
Types of stress 
Nowadays we can categorize stress into three main types [80]: 
1) Acute: stress caused by an acute short-term stress factor. 
2) Episodic acute: acute stress that occurs more frequently and/or periodically. 
3) Chronic: stress caused by long-term stress factors and can be very harmful in 
the long run. 
Today we have many wearable devices, such as mobile phones and wearable 
sensors to measure physiological or behavioral data in our daily lives. In the work 
of Muaremi and others [11], the authors present a solution for assessing the stress 
experience of people, using features derived from smartphones and wearable 
chest belts. In particular, they use information from audio, physical activity, and 
communication data collected during workday and heart rate variability data 
collected at night during sleep to build multinomial logistic regression models. 
In general, they follow the approach of estimating changes of subjective self-
perception of stress using smartphone sensor measures and information derived 
for the HRV signal during night. From 8 a.m. to 8 p.m., the day is divided into four 
sections, and randomly within each section, a notification is shown which asks the 
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user to fill in a self-assessment questionnaire as depicted in Figure 28. In parallel 
to that, smartphone data are being collected during the day in the background. 
Before going to sleep, the user answers an additional stress question and puts on 
the Wahoo chest belt (http://www.wahoofitness.com) which collects HRV data 
during night until the next morning. After getting up, a new cycle of data collection 
begins. The idea now is to use these smartphone and wearable device data to 
estimate the self-assessment stress score. 

 
Figure 28: Cycle of data collection. 

The authors conducted their evaluation experiment with 35 users working in three 
IT companies participated for 4 months. The ages of the participants were equally 
distributed from 25 to 62 years old. Regarding the selection of the features the 
procedure that they followed was to reduce their number using cross-correlation 
analysis and then to feed the remaining features into a sequential feature selection 
method to find the best subset in terms of classification accuracy. Finally they 
defined two different stress scores, the daily stress score estimating the acute 
stress level of the previous day and the long-term stress score which is the 
accumulated stress over the last days and estimates the chronic stress level of a 
person. Based on the cross-correlation analysis that they implemented they have 
estimated the best feature subset for each individual user. They highlight that the 
HRV features are in general more important than the smartphone features. 
Another relevant study is the one of Sano and Picard [61] aims to use technology 
to recognize stress levels using data from the devices that users always carry and 
wear. 
In Sano and Picard’s study [61], the authors collected 5-day physiological and 
behavioral data including skin conductance which is considered as a stress 
measure as well as mobile phone usage data and subjective measures about 
general health, mood and stress from 18 subjects. They then investigated whether 
these data would allow them to recognize whether participants felt stressed or not. 
Note that this study is limited to stress that participants are able to perceive and 
report. 
In the experiment participated 18 people who at first they had to fill out three pre-
surveys and they were given the instructions on how to use the application. The 
main features coming from the wearable sensors are the following: three axis 
accelerometer data (ACC) and skin conductance (SC) a measure of sympathetic 
nervous activity. Then the main features coming from the mobile phone were: 
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calls, SMSs, location and screen on/off. Moreover surveys were filled out every 
morning and evening. The details of the questions are depicted in Figure 29. 
 

 
Figure 29: Mobile phone questions. 

Their results show over 75% accuracy of low and high perceived stress 
recognition using the combination of mobile phone usage and sensor data. 
Although these are preliminary with limited number of participants and data, it 
promises that mobile phone usage and wearable sensor data include some 
features related to the stress level of the users. 
In the work of Bakker and others [80] is considered a simplified setting assuming 
that a person is either in the normal state or in a stressed state. The change 
between the two states can be sudden or incremental, typically, arousal is more 
rapid and relaxation takes considerably longer. They have conducted a pilot case 
study aimed at the identification of likely challenges they need to address to make 
their approach work in practice. They focus only on the problem of detecting 
changes in the stress level from the GSR sensor data alone. They study the 
peculiarities of noise and disturbances in the signal and argue the need of the 
related contextual data for improving the quality of stress detection. 
The principal task is to detect whether a person is stressed at a specific moment 
in time or not. The detector assigns a label ‘’stressed’’ or ‘’not stressed’’ based on 
the observed historic data. The four states that depict the inner process of stress 
are depicted in Figure 30. 
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Figure 30: Four states depicting the inner process of stress. 

The authors highlight that the changes in GSR data is not as straightforward as 
someone might think looking at the Figure 31. Different types of noise in the data 
and changes in GSR data due to other factors than stressors make it a non-trivial 
task.  

 
Figure 31: Acute stress pattern observed from GSR data. 

The quality of the GSR signal depends primarily on the continuity of the contact 
between the device and the skin of the user. The skin conductance is measured 
by two electrodes that require skin contact in order to produce a reliable signal. 
However this contact is not the same for everyone. 
Finally we should mention that there are some commercial solutions that aim to 
detect stress by using the above mentioned methods based on physiological 
signals [89, 90]. For example Emvio [89] is a new released bracelet that aims to 
measure the stress levels of the end-users. Emvio measures stress mainly 
through assessing the sympathetic component of the autonomic nervous system 
(ANS). It uses a heart rate variability index to calculate the stress level of the user 
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in a fixed scale from 0 to 10. There are several commercial solutions that aim to 
detect stress but in reality they simply monitor physiological signals in real-time 
and they purely based on changes of the autonomic nervous system like in the 
above mentioned methods based on biological signals. 

3.2 Theoretical model and implementation 
During the design and test of the fall detection system described above, we 
acquired deep knowledge in processing raw sensor data from smart devices. 
Thanks to this knowledge we have created a mathematical model for detecting 
stress patterns based on the raw data of the sensors of the smart phones of the 
users. 
We envision a new class of personal wellbeing applications for smartphones 
capable of monitoring multiple dimensions of human behavior, encompassing 
physical, mental and social dimensions of wellbeing. An important enabler of this 
vision is the recent advances in smartphones, which are equipped with powerful 
embedded sensors, such as an accelerometer, digital compass, gyroscope, 
Global Positioning System (GPS), microphone, and camera. 
Smartphones present a programmable platform for monitoring wellbeing as 
people go about their lives. It is now possible to infer a range of behaviors on the 
phone in real-time, allowing users to receive feedback in response to everyday 
lifestyle choices that enables them to better manage their health. In addition, the 
popularity of smartphone application stores (e.g., the Apple App Store, Android 
Market) has opened an effective software delivery channel whereby a wellbeing 
application can be installed in seconds, further lowering the barrier to user 
adoption. We believe production-quality wellbeing applications will gain rapid 
adoption globally, driven by: i) near zero user effort, due to automated sensor 
based activity inference and ii) universal access, only requiring a single download 
from a mobile phone application store and installation on an off-the-shelf 
smartphone. 
In this thesis we present a stress detection system which takes into account three 
main dimensions of wellbeing. The sleeping pattern, the physical activity of the 
users and their social interaction are accumulated with different weight factors and 
give an estimation of the daily stress level of the user. To the best of our 
knowledge, this is the first system that computes a stress score based on different 
dimensions of human wellbeing. The main innovation of this work is addressed in 
the fact that the way the stress level is computed is as less invasive as possible. 
Our solution relies only on the daily phone usage of people. Also we acquire the 
ground truth for the importance of each dimension of wellbeing for each individual 
by asking the users. This leads us to a personalized model which focuses on the 
personality of each individual user. 
System design: The StayActive system provides an Android application running 
on a smart phone. We have chosen the Android based solution because it is an 
open source framework designed for mobile devices. The Android Software 
Development Kit (SDK) provides the Application Programming Interface (API) 
libraries and developer tools necessary to build, test and debug applications for 
Android. We implemented the prototype in Java using the Android SDK API 23. 
The idea of the full StayActive system is the following. There is a mathematical 
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model which computes the stress level of the users. The mathematical model is 
running on the phone of the user being a light application with minimized battery 
consumption. The reason is that we want to make the users able to use the 
application for the biggest possible amount of time without needing to recharge 
their phone. The general architecture of our stress detection system is given in 
Figure 32. 

 
Figure 32: StayActive system architecture overview. 

Providers: The first layer is the one that collects and provides the data to upper 
layers. The provider module contains all the implemented data providers, which 
are responsible for collecting a specific type of data from the device. They are free 
to implement the data monitoring behavior as they wish. The currently 
implemented providers collect the following type of data: type of physical activity, 
calls and SMS, ambient light and temperature, location, battery level, screen 
on/off intervals, Wi-Fi, step counter, number of screen touches and finally type of 
applications launched. We give some examples of the results of these providers 
in Figures 33 - 36. 
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Figure 33: Visualization of data from the step counter provider. 

 
Figure 34: Visualization of data from the call provider. 

 
Figure 35: Visualization of data from the physical activity provider. 
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Figure 36: Visualization of data from the touch provider. 

Server: The server module is responsible for receiving data from the mobile 
devices and storing it in a database. We aggregate all the data and we process it 
in order to extract a relaxation score for each user. 
Detection: This module contains analyzers for each data provider, which extract 
useful information and patterns from the raw data to output a partial relaxation 
score. The relaxation score is the opposite of the stress score. We decided to use 
the relaxation score because it is more comfortable for the end-users. The 
relationship of the stress and the relaxation scores has been validated from our 
project partners at Ana Aslan Foundation (AAIF). The core detector module will 
aggregate the results of these individual analyzers and compute a final stress 
level, as explained in the next section. 
Sleeping pattern: There is a large body of research work which analyzes the link 
between sleep hygiene and the mood of people [63, 64]. People usually exchange 
sleep for additional working hours as a coping mechanism for busy lifestyles. In 
our stress detection module we take into account the user's duration of sleep. We 
set the number of normal sleeping hours at 8 and penalize insufficient sleep and 
oversleeping. Between 6 p.m. and 10 a.m. we compute the biggest time interval 
that the user did not touch his screen and we infer the duration of his sleep. The 
function that computes the score for the sleeping pattern (as depicted in Figure 
37) takes into account the daily sleeping hours to the perfect score of 8 hours 
(golden value), the mean of the sleeping history of the user to the golden value 
average and a consistency metric that takes into account the standard deviation 
of the sleeping hours values. Taking the standard deviation into account we 
compute a more accurate stress score that takes the past into account. For 
example the stress result for a person that slept the last month consistently 8 
hours will be different and better than the one for a person that slept on average 
the last month 8 hours but was sleeping some days 10 hours and some days 6 
hours. Also if a user sleeps a day more than 8 hours we will penalize his behavior 
in the sleep score. 
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Figure 37: Function for computation of sleeping hours. 

We should clarify that we could have asked directly the user of the smartphone 
how many hours per day he was sleeping or to use existing apps that can calculate 
the amount of sleep of the people. However, we decided not to follow this 
approach because it was crucial for our stress detection system to be as less 
invasive as possible for the end-user. In order to validate our findings we 
compared the results of our sleeping algorithm with existing apps and with the 
feedback of the users we were able to validate the accuracy of our sleeping 
pattern prediction. 
Social interaction: The daily social interaction of people has a serious impact on 
many dimensions of wellbeing [64]. People who maintain dense social 
connections are more likely to have resilient mental health. They tend to be able 
to cope with stress and often are better able to manage chronic illness. On the 
other hand regarding communication, researchers are hypothesizing that perhaps 
people become so used to and even dependent on receiving constant messages, 
emails, and tweets, that the moment they do not receive one, their anxiety 
increases. People feel compelled to check their phone constantly, which can then 
lead to disappointment when there are no new messages, and increased stress 
about why no one is messaging them, or when the next message might come. 
However, repetitive checking of mobile phones is considered a compulsive 
behavior [65]. People who are highly dependent on the Internet for interaction act 
impulsively, avoid emotions, and fail to keep up a proper planning or time 
management [66]. We identify features which are relevant for detecting 
problematic phone usage and therefore increase the stress level of the user. 
In our system we take into account the number of touches of the screen 
(quantifying the usage of applications on the phone), the number of calls and the 
number of SMSs as factors for the social interaction of the users using their 
smartphones, as seen in Figure 38. The accumulated result per day is multiplied 
with the corresponding weight factor and therefore it is accumulated in the total 
relaxation score. 
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Figure 38: Social interaction. 

The accumulated result of the social interaction dimension is computed using 
weights. These weights of the subdimensions of the social pattern are computed 
by asking the users in the beginning of the experiment to prioritize the ways of 
social interaction. The idea of the scoring procedure is the following. We assign a 
weight factor to each of the three subdimensions of social interaction. This factor 
is based on the response of the participants to the following question which was 
asked in the beginning of the experiment. Which of the three subdimensions do 
they personally consider as the most important for their communication with other 
people? To the most important dimension we assign a weight of w1 = 0.4 and to 
the rest we assign a weight of 0.3 respectively (w2 = w3= 0.3), so that w1 + w2 + 
w3 = 1. 
Physical activity: Physical activity plays a key role in the control of 
neuroendocrine, autonomic, and behavioral responses to physical and 
phychosocial stress. Physical activity is commonly regarded as beneficial to both 
physical and psychological health, and is seen as an effective preventive measure 
and treatment for stress-related diseases. Physically active people show reduced 
reactivity to physical stressors as well as reduced susceptibility to the adverse 
influences of life stress [67]. Several studies have linked exercise to improved 
depression, self-esteem and stress [68], [69]. Our system monitors the physical 
activity of the user, making the distinction between the type of activity (e.g. 
walking, running, bicycling). We have also implemented a step counter which 
gives us the opportunity to find the number of steps that each user took per day. 
The American Heart Association uses the 10,000 steps metric as a guideline to 
follow for improving health and decreasing risk of heart disease, the leading cause 
of death in America. 10,000 steps a day is a rough equivalent to the Surgeon 
Generals recommendation to accumulate 30 minutes of activity most days of the 
week. 
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At first, in our model we assign the maximum value of wellbeing, and therefore the 
lowest stress level, when reaching the goal of 10,000 steps per day. If someone 
reaches less than this number we penalize (decrease relaxation score) with a 
weight factor per 1,000 steps. After the reception of the data for one month and 
based on the answers of the users to the Circumplex Model of Affect, we extract 
the pattern between the ideal physical activity of each individual user and his daily 
steps. Therefore extracting the personal pattern of the user we assign this value 
to the maximum value of wellbeing for this user. Then the comparison and the 
behavior of the user is compared with this personalized new value. The full 
analysis of the stress detection algorithm is given in the stress detection paper in 
Appendices. 
Evaluation: The evaluation of our model has been divided in two phases. During 
the first phase we monitored the behavior of the users in the above mentioned 
three dimensions of well-being (sleeping pattern, social interaction, physical 
activity) collecting data for a month. The participants of this first phase were five 
young adults coming from our lab. We decided that at least in the beginning the 
end-users will be the members of our team. This made our plan more flexible to 
immediate feedback and changes to the StayActive application. The plan was to 
have four weeks of recordings where the end-users will use the StayActive 
application and they will give their input on how relaxed/stressed they feel with the 
questionnaire described above. 
We computed a relaxation score for each individual user for every day of the 
monitoring month. In order to evaluate the accuracy of this relaxation score value 
we were asking the users two self-measure their relaxation level as depicted in 
Figure 39. Based on the feedback that we were taking from the users we were 
able to see how accurately we measure their relaxation level and accordingly 
adjust the weight factors of the sub dimensions. 

 
Figure 39: Self-assessment of relaxation level. 
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Besides gathering as many data as possible from the smartphone, the user had 
to fill a questionnaire with his subjective self-perception of his mood. First we 
researched several validated models that phycologists have proposed to measure 
and describe affect and emotion, including the “Positive and Negative Affect 
Schedule (PANAS)” one. We concluded to use the “Circumplex Model of Affect” 
as described by James A. Russell [78]. This model consists of 2 dimensions, the 
pleasure-displeasure and the arousal-sleep dimension. We chose to use this 
model because it can represent a wider range of mood states. In addition to that 
we have added another dimension, that is the relaxation-stress one, which may 
be finally used either on its own, or as a third dimension along with the other two 
and the one that is used for the evaluation of our predictions. 
The plan was the following. For the first three weeks we were training the system 
with data that we were collecting from the 5 end-users. Taking into account their 
feedback regarding their relaxation level each day and the relaxation score that 
we were computing through StayActive. For the last week of the experiment we 
evaluated our stress detection system. 
 

 
Figure 40: Relaxation score validation for user 1. 
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Figure 41: Relaxation score validation for user 2. 

 
 
In the Figures 40-44 we can see the comparison of the relaxation score that our 
stress detection system computes for the last seven days of the experiment and 
the corresponding values of the user feedback for these days. 
In order to evaluate the accuracy of the prediction of our model we have calculated 
the Root Mean Square Error (RMSE) for each user. We received the following 
values. RMSE1=1.23, RMSE2=1.247, RMSE3=0.76, RMSE4=2.17 and 
RMSE5=2.06. 
Three of the five participants were using their personal phones and therefore their 
computed relaxation level was consistent since we were able to accurately 
measure their sleeping pattern. The user 4 and the user 5 were using the 
application only during the working hours and therefore we were calculating their 
relaxation score based on the two of the three dimensions, the physical activity 
and the social interaction. We were not taking into account the sleeping pattern. 
We observe that the RMSE values for these two users were bigger that the other 
three users and this leads to the fact that each of the dimensions is very important 
for the correct estimation of the relaxation level of the user. 
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Figure 42: Relaxation score validation for user 3. 

 
Figure 43: Relaxation score validation for user 4. 
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Figure 44: Relaxation score validation user 5. 

We can see in the Figures 40-42 of the scores of the three users that the predicted 
values were close enough to the actual responses of the users. This means that 
our system has been trained in a way that the stress detection is accurate enough 
when we take into account all the dimensions of the stress detection algorithm. 
Moreover it becomes clear the importance of taking into account all the 
dimensions of the algorithm. We observe that as soon as a dimension is not taken 
into account the predicted value of the relaxation score of the user has more 
uncertainty. 
Modeling: Taking under consideration that the underlying objective is that of 
multiclass classification, a consideration should be made on the frame of 
reference upon which a measure of predictive improvement shall be taken.  

Selection of modelling technique 
The objective is the prediction of the psychic perception class “low”, “medium” or 
“high” for Relaxation. Therefore suitable classification techniques from the 
statistical and machine learning framework are employed to provide results. 
Despite the fact that a number of different techniques exist, we selected four 
techniques that belong to different modelling traditions. The selected techniques 
are the Partial Least Squares (PLS), the Random Forests (RF), the Gradient 
Boosting Machines (GBM) and the Support Vector Machines (SVM).  

 Partial least squares 
Partial least squares (PLS) is a statistical method that bears some relation to 
principal components regression; instead of finding hyperplanes of minimum 
variance between the response and independent variables, it finds a linear 
regression model by projecting the predicted variables and the observable 
variables to a new space [98]. It is very useful when we need to predict a set of 
independent variables from a large set of independent variables. 
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 Random Forests 
Random forests (RF) is a notion of the general technique of random decision 
forests that are an ensemble learning method for classification, regression and 
other tasks, that operate by constructing a multitude of decision trees at training 
time and outputting the class that is the mode of the classes (classification) or 
mean prediction (regression) of the individual trees [99].  

 Gradient Boosting Machines 
Gradient boosting is a machine learning technique for regression and 
classification problems, which produces a prediction model in the form of an 
ensemble of weak prediction models, typically decision trees [100]. It is quite 
powerful technique and has shown considerable success in a wide range of 
practical applications 

 Support Vector Machines 
In machine learning, support vector machines (SVMs, also support vector 
networks) are supervised learning models with associated learning algorithms that 
analyze data used for classification and regression analysis [101]. 
Models comparison assessment (with respect to predictive capability) 
All models shall be tested with respect to maximizing the “Accuracy” metric, under 
the resampling method of repeated cross validation. “Accuracy” is selected due to 
its simplicity of meaning. It refers directly to the model's capability of identifying 
correctly the estimated class. 
"Cross-validation is a model validation technique for assessing how the results of 
a statistical analysis will generalize to an independent data set. The goal of cross 
validation is to define a dataset to "test" the model in the training phase (i.e., the 
validation dataset), in order to limit problems like overfitting, give an insight on 
how the model will generalize to an independent dataset (i.e., an unknown 
dataset, for instance from a real problem), etc. One round of cross-validation 
involves partitioning a sample of data into complementary subsets, performing the 
analysis on one subset (called the training set), and validating the analysis on the 
other subset (called the validation set or testing set) [102]. 
Predicting Relaxation 
The following table summarizes the Accuracy results of the four different modeling 
approaches. 
  

Model Min Mean Max 

PLS 0.4412 0.5889 0.8182 

RF 0.4688 0.6313 0.7500 

GBM 0.4848 0.6111 0.8182 

SVM 0.3636 0.5488 0.7188 
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Table 6: Accuracy results 
Besides the above seen results, the tests were performed on the models' 
performance in pairs. Based on the results it can be seen that PLS, RF and GBM 
outperform SVM. RF outperforms PLS, however no clear decision in a statistical 
significant way can be made on whether RF is better than GBM or if GBM is better 
than PLS. 
Since a final model should be selected, the present study chooses based on just 
the mean Accuracy results to select RF as the one that delivers the best predictive 
performance. Comparing RF predictive performance against the naive model (that 
being that all predictions are “high”) where the prediction “Accuracy” is equal to 
50.4%, one can observe that the machine learning approach provided with a lift 
of predictive performance equal to 63.13% - 50.4% ~ 12.7%. 
The second phase of the evaluation of our stress detection system took place in 
Switzerland with the Public Transportation Company of Geneva (TPG) and in 
Romania with various end-users from the Bucharest Transportation Company 
(RATB), the Bucharest University and from a Clinical Hospital (admin staff). The 
20 participants aged between 55 and 65 years old. The users used smartphones 
with the StayActive application installed in the phones for two weeks. Again the 
same procedure like in the first phase of the evaluation has been followed. The 
StayActive app was calculating a relaxation score for each individual user who 
was able to self-assess this score by the feedback depicted in Figure 39.  
The focus of the second phase of the study was on the evaluation of how 
acceptable is our stress detection system from the end-users. The ultimate goal 
of our stress detection system was to be as less invasive as possible and therefore 
user-friendly. In the Figures 45, 46 we are able to see the acceptance of 
StayActive from the end-users. We can see that 75% of the end-users found the 
system easy to use and intuitive. Moreover 90% of the users wanted to be able to 
see a graph of their relaxation score in their StayActive mobile application. 
As we already mentioned before we must highlight that the real data that we have 
received from our project partners are totally anonymous and therefore the 
anonymity and privacy of the people that were involved in the experiments is 
protected. 
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Figure 45: Acceptance of StayActive. 

 
Figure 46: Acceptance of graphics of StayActive. 

This leads to the conclusion that the end-users found the stress detection system 
comfortable and easy to use. 
The main goal of our stress detection system compared to others is that we are 
trying to be as less invasive as possible. After our experience with end-users and 
of course after the discussions in the panels of the conferences that we have 
presented our work it has become pretty clear that the end-users will not accept 
to use an invasive wearable device (e.g. a t-shirt or a chest-band) in a daily basis. 
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Even if you can ensure them that their stress detection will be pretty accurate they 
will not be willing to use an invasive device for a long period of time. This is the 
main vulnerability of such stress detection systems which are using wearable 
devices to measure the HRV and the GSR of the user and combine them with 
other features in a machine learning model in order to predict stress. 
In StayActive we use only smartphone data for detecting stress. This means that 
the user is not obliged to wear an uncomfortable device that will decrease his 
motivation to use the stress detection system. He can use his smartphone as 
usual and at the same time he will be able to measure his relaxation level. 

3.3 Discussion and comparison 
In this thesis we focus only on the chronic stress. Chronic stress is difficult to 
manage because it cannot be measured in a consistent and timely way. One 
current method to characterize an individual’s stress level is to conduct an 
interview or to administer a questionnaire during a visit with a physician or 
psychologist. This method provides only a momentary snapshot of the individual’s 
stress level, as most individuals cannot accurately recall the history of the ebb and 
flow of their stress symptoms [57]. Continuous monitoring of an individual’s stress 
levels is essential for understanding and managing personal stress. A number of 
physiological markers are widely used for stress assessment, including: galvanic 
skin response, several features of heart beat patterns, blood pressure, and 
respiration activity [58, 59]. Fortunately, miniaturized wireless devices are 
available to monitor these physiological markers. By using these devices, 
individuals can closely track changes in their vital signs in order to maintain better 
health. 
The most common method to quantify stress is to simply ask people about their 
mood using questionnaires. There are standard methods for doing so like the 
Perceived Stress Scale questionnaire (PSS) [60]. Questions in the PSS assess to 
what degree a subject feels stressed in a given situation. 
Nowadays wearable devices such as mobile phones and wearable sensors are 
ubiquitous in our lives. Several researchers have tried to understand personality 
from mobile phone usage [61]. Our stress detection system aims to use 
technology to recognize stress levels using data from the devices that users 
always carry and wear. 
Sleeping patterns, social life and physical activity are connected with the presence 
of stress in people's lives [62]. We take into account these three dimensions for 
building our stress detection system. The motivation for creating a solution based 
only on the daily phone usage of people is based on the idea to be as less invasive 
as possible for the end-user. 
Stress is an important aspect of well-being and it impacts mental health. Unlike 
sleeping hours, or activity time, stress is unfortunately more difficult to quantify in 
a non-intrusive way. The ability to detect stress in a continuous way is the 
motivation behind our research. Our target is to detect stress in a non-invasive 
way for the user. Information gathered from the smartphone will be utilized. 
In this thesis we aim to find behavioral markers for stress. Although there are still 
several open questions regarding the links between the behavior of a person and 
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their stress level, in our stress detection system called StayActive we take a 
pragmatic approach and build an initial stress detection module which can be 
extended and refined. 
The main goal of our stress detection system compared to others is that we are 
trying to be as less invasive as possible. After our experience with end-users and 
of course after the discussions in the panels of the conferences that we have 
presented our work it has become pretty clear that the end-users will not accept 
to use an invasive wearable device (e.g. a t-shirt or a chest-band) in a daily basis. 
Even if you can ensure them that their stress detection will be pretty accurate they 
will not be willing to use an invasive device for a long period of time. This is the 
main vulnerability of such stress detection systems which are using wearable 
devices to measure the HRV and the GSR of the user and combine them with 
other features in a machine learning model in order to predict stress. 
In StayActive we use only smartphone data for detecting stress. This means that 
the user is not obliged to wear an uncomfortable device that will decrease his 
motivation to use the stress detection system. He can use his smartphone as 
usual and at the same time he will be able to measure his relaxation level.  
Simply collecting the patterns of people’s behavior is insufficient for helping them 
improve their personal wellbeing. It is important to use different dimensions of 
people’s wellbeing and compute their stress level. That way, we will be able to 
help them by giving advice for reducing their stress level and therefore improving 
their quality of life. Our stress detection system takes into account three main 
dimensions of wellbeing: the sleeping pattern of the users, their social interaction 
and their physical activity. 
Comparing StayActive with the work of Muaremi [11] we observe that their stress 
detection system uses a chest belt which is uncomfortable for the end-users and 
there is the possibility that they will refuse to wear it. On the other side StayActive 
uses only data that come from the smart phones of the users and therefore it is a 
less invasive, easily acceptable solution. 
Moreover, comparing StayActive with the work that researchers at MIT [61] have 
done there is again the advantage of StayActive in terms of acceptance of the end 
user. The number of people that they tested their stress detection system was 18, 
coming from their lab whereas in our case we evaluated the accuracy of our stress 
detection with 5 people and the acceptability of the system with 20 end-users that 
work for the public transportation company of Geneva and Romania. 
Comparing StayActive with MoodSense [79] we can make the following 
statements. They have created an iPhone application that tries to infer it’s owners 
mood based on information already available in today’s smartphones. They report 
results from studying 25 iPhone users in the field and the correlation between their 
mood and phone usage. We observe that although they are not invasive since 
they use data coming from the smartphones of the users, they do not detect 
stress. On the other side we have created a model that is able to detect stress 
based on the data that we collect from the daily phone usage of the users. 
Therefore we go one step further and we have advanced the research of detecting 
mood and stress using the daily usage of the smart devices of the users.  
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To the best of our knowledge, StayActive is the very first stress detection system 
that takes into account only the usage of the smartphone of the end-user. Of 
course someone can argue that we can miss important information (extra 
dimensions) that come from wearable devices. This is an issue that we have taken 
into account creating the necessary engineering structure. Our solution is built in 
a way that it can easily add extra dimensions coming from wearable devices such 
as the heart rate, the heart rate variability and the galvanic skin response. 
Therefore it can detect stress in a non-invasive way and at the same time compare 
its performance with other stress detection systems that take different or more 
dimensions into account in order to extract a stress score. Finally the architecture 
of StayActive provides us the opportunity to include all the dimensions that can 
refine our stress detection score.  

3.4 Personal contribution 
In the research part of the stress detection system, in our first publication related 
to the stress detection [74] we present the architecture and the model of 
StayActive, a system which aims to detect stress and burn-out risks by analysing 
the behavior of the users via their smartphone. In particular, we collect data from 
people’s daily phone usage gathering information about the sleeping pattern, the 
social interaction and the physical activity of the user. We assign a weight factor 
to each of these three dimensions of wellbeing according to the user’s personal 
perception and build a stress detection system.  
In the second publication related to stress detection [75] we evaluate our system 
in a real world environment with people working in the transportation company of 
Geneva. The main innovation of this work is addressed in the fact that the way 
the stress level is computed is as less invasive as possible for the users. The user 
is not obliged to wear an uncomfortable device that will decrease his motivation 
to use the stress detection system. He can use his smartphone as usual and at 
the same time being able to measure his relaxation level.  
The papers that compose this thesis are product of deep research in the field of 
stress detection. The author of this thesis was the first author in these papers. The 
innovative ideas and the algorithms that are presented in these papers have been 
developed from the author of the thesis. He has created all the models and has 
run all the experiments that had been described in the publications. He was the 
main researcher of the StayActive AAL project starting from the analysis of the 
existing state of the art to the design and implementation of a promising with many 
future directions stress detection system. The co-authors of the papers were 
participating mostly in the coding support and in the quality of the English of the 
papers. 
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4. Discussion 
In this thesis, two innovative e-health applications have been presented. The first 
one is a fall detection system called F2D which runs on an independent 
smartwatch. Thanks to the knowledge that has been acquired by building F2D, 
we were able to extract from the smartphones of the users useful data for 
detecting stress patterns. Therefore, the second application is a stress detection 
system called StayActive which uses information from the daily phone usage of 
the user.  

4.1 Limitations 
In order to conclude our work we have to discuss the design and implementation 
limitations of the presented fall and stress detection systems.  
Fall detection 
F2D works on a smartwatch, therefore completely independent from a base 
station. Using such a device is less stigmatizing for the user. In addition, it can be 
offered for less than half of the cost of existing systems on the market. Our system 
meets the requirements of reliability, ease of installation and restriction of false 
positives [41] which are essential for a properly built fall detection system. 
We decided to use a threshold based algorithm and not a machine learning 
approach like [37] as it is less complex and therefore requires the lowest 
computational power [45]. In the typical scenario, the user will use the application 
on his smartwatch normally during the day without the requirement of charging it 
much more than usually. Since the fall detection system will run continuously, we 
should optimize the battery consumption of the device. Therefore, only the tri-axial 
accelerometer signal is used since it is the most informative sensor regarding the 
fall detection. 
A main issue that came across while designing F2D was the after fall activity and 
more specifically what should happen as long as we detect a fall. For the moment 
we trigger an alarm and we inform a caretaker who can be a family member or 
another person like a nurse. But which should be the next step, if the caretaker is 
busy and he will not respond to the call or SMS that he will receive? This is a main 
issue that we should clarify in order to successfully transform our fall detection 
system to a service.  
Moreover the transformation of the fall detection system to a service needs to 
identify in an accurate way the location that the fall has taken place. It is very 
crucial for the safety of the person that has fallen to know the exact position that 
the fall took place. The context awareness that the location module added to the 
fall detection system is very important for the final scope of this application. Since 
we are targeting the care of elderly people who are in a nursing home, knowing 
the location of the user after a fall is very important. The carertaker will know in 
which room the elderly has fallen and therefore they will be able to immediately 
provide the help that this person needs. This issue has already been discovered 
from our side and it is explained in more detail in the next section of the future 
work.  
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Also another limitation of F2D is that although the activities of daily living have 
been recorded from elderly people making our solution very innovative compared 
to others, still the falls have been simulated from experts of falling and not from 
elderly people. Of course this limitation exists in all the fall detection systems that 
have been reviewed because it is impossible to ask elderly people to fall just for 
testing purposes. 
Finally, we should highlight the potential privacy issues of a fall detection system. 
We should highlight that not all types of sensors are equally vulnerable. Context-
aware systems in general and video-based systems are much more prone to 
privacy concerns than a solution that works on a smartwatch like F2D. Therefore 
the end-user will accept to use our fall detection system since he does not feel to 
be monitorized. 
Stress detection 
In StayActive we use only smartphone data for detecting stress. This means that 
the user is not obliged to wear an uncomfortable device that will decrease his 
motivation to use the stress detection system. He can use his smartphone as 
usual and at the same time he will be able to measure his relaxation level.  
Simply collecting the patterns of people’s behavior is insufficient for helping them 
improve their personal wellbeing. It is important to use different dimensions of 
people’s wellbeing and compute their stress level. That way, we will be able to 
help them by giving advice for reducing their stress level and therefore improving 
their quality of life. Our stress detection system takes into account three main 
dimensions of wellbeing: the sleeping pattern of the users, their social interaction 
and their physical activity. 
We should highlight that stress is a subjective term. Therefore it is very 
challenging to predict it if you do not take into account the self-assessment of the 
end-users. This fact gives much more importance in the different dimensions that 
we take into account in order to evaluate the stress level of the end-users. The 
more the dimensions the better the assessment will be. In order to transform our 
stress detection system to a service we should add more dimensions in the 
algorithm that detects the stress. We will have the flexibility to discard the 
dimensions that have not been accurately measured. Like for example, in our case 
with the sleeping pattern dimension for the end-users that did not use their 
personal phone. 
Another big challenge that we have to take into account is the user preference in 
the software of the smart devices.  Nowadays some people use Android devices 
whereas some others iOS. For this reason our stress detection should not depend 
on any specific platform. Careful consideration should be given to the limitations 
imposed by both those mobile platforms. In other words, our system must be 
designed with enough flexibility so that it still works with specific platform-
dependant limitations. For the moment we have tested our system only on Android 
smartphones but our service should be device independent. 
Finally we should highlight the potential privacy issues. Firstly, all the users of the 
study were conscious about the data that were collected during the trials. There 
was a consent from created from our end-user partner in Romania (Ana Aslan 
Foundation) that the users had signed before starting the trials. Moreover each 
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user had a unique identification number on the server that the data were collected 
for analysis. Therefore, the identification of the users was taken place by this 
identification number and not by name. It was only Ana Aslan Foundation that 
could make the link of the identification numbers to the names of the users. 
In general, as Westin [81] pointed out, our participants’ sample confirmed the 
existence of three main groups of privacy categories. We have users that tend not 
to delete any automatically shared data (privacy unconcerned). There are also 
other users that are more equilibrated, i.e., privacy pragmatists, who take different 
decisions, depending on context and kind of data shared. Finally, there are some 
that are privacy fundamentalists and tend always to delete content. This particular 
fact is known, and our results show that our sample has similar characteristics. 
Only privacy unconcerned participants are sharing significantly more when data 
is anonymous. At this stage, this fact implies that anonymity cannot, in theory, 
change the mind of users in our sample on how they make their sharing decisions. 
Privacy pragmatists are still pragmatist, and fundamentalists remain 
fundamentalists. 
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5. Conclusion and future work 
Quality healthcare provisioning in Europe has become a major issue for the EU 
healthcare systems. The population growth and the increasing number of chronic 
patients have created a strong shift in creating applications for the improvement 
of daily lives of these people. In this context, innovation through the e-health 
industry will bring fruitful results to the demands of the elderly patients. 
Older people, especially those who may have just left the working environment, 
can suffer a sense of loss, particularly of value, purpose, confidence. This can 
lead to mood swings, isolation and possibly depression.  
In this thesis we have tried to show how elderly people could be able to sustain 
their daily life activities by using their smart devices (e.g. smartphones and 
smartwatches). There is no need for them to use invasive and uncomfortable 
devices that will be hard for them to use in the long-term. We provide them with 
e-health applications that run on the existing smart devices of people without any 
conflict with their other applications. Therefore without changing their daily habits 
they will be able at the same time to be protected and sustain their activities of 
daily living and feel confident and autonomous. 
Two innovative e-health applications which will improve the quality of life of elderly 
people have been presented. The first one is a fall detection system which runs 
on an independent smartwatch. Thanks to the knowledge that we acquired by 
extracting useful information from the sensors of smart devices and more 
specifically by detecting falls from a smartwatch, we enhanced our know-how 
analyzing and extracting patterns from raw sensor data. The next implementation 
of our expertise and second main element of this thesis is the detection of stress 
patterns by analyzing smartphone data. We created a stress detection system 
which uses information from the daily phone usage of the user. StayActive takes 
into account three main dimensions of wellbeing: the sleeping pattern of the users, 
their social interaction and their physical activity, being as less invasive as 
possible for the end-user. 
Both the fall detection system and the stress detection systems have as main 
technical characteristic the extraction of useful patterns from the raw sensor data 
of smart devices. We have acquired deep knowledge and we have developed 
different patterns for extracting useful information from the sensors that the typical 
smart devices like smartphone and smartwatches use. Based on these patterns 
we have created innovative algorithms that have led to the two e-health 
applications that have been analyzed. 
Fall detection is a research field that has a big impact on the improvement of the 
daily life of elderly people. In this thesis we presented the first fall detection system 
designed to run on an independent smartwatch (F2D). There is no base station 
(which limits the range), no central alarm station (which is more difficult to 
manage) and it works on a standard smartwatch. It implies that it is less 
stigmatizing for the end user, removing the social stigma of wearing a medical 
device, quite cheap comparing to existing systems and it is easily extendable. F2D 
uses an innovative fall detection algorithm which takes into account the rebound 
after the fall, the residual movement and the location of the user in order to match 
a fall pattern to a real fall. 
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Nowadays, simple smartwatches are very powerful and have a set of sensors that 
can be used and diverted from their original intent. More computing power and 
storage on these devices offer greater opportunities. In F2D we use the 
accelerometer sensor in the smartwatch to feed the fall detection algorithm, 
considering also the residual movement after the fall. Using a single smartwatch 
as a device for running the F2D application satisfies the condition of ease of 
installation of the fall detection system. The context awareness that the location 
module added to the fall detection system is very important for the final scope of 
this application. Since we are targeting the care of elderly people who are in a 
nursing home, knowing the location of the user after a fall is very important. The 
carer will know in which room the elderly has fallen and therefore they will be able 
to immediately provide the help that this person needs. 
Finally, the main innovation of F2D is that we have used real Activities of Daily 
Living from elderly people, testing our system in real life situations. Also we used 
data with simulated falls from experts (FST) in reproducing falls simulated like 
coming from elderly people. These experiments demonstrated that the fall 
detection system is robust and ready to be released on the market. 
For the quantitative results analysis, we have created a tool with which we can 
run the fall detection algorithm against the data that FST has provided. Using this 
tool we could systematically test all the improvements made to the algorithm. 
Based on the results that we have obtained by testing our fall detection system in 
real life scenarios, the commercial deployment of F2D is the natural next step. 
F2D will enlarge the product range the FST is currently providing to their users. 
Since they work directly with end-users and with end user organizations, they are 
able to personalize the system according to the user profile and environment, thus 
providing a much more accurate and safe system than the generic solutions 
available on the market. The final application gives the opportunity to the user to 
select the parameters that correspond to their profile and trade off between fall 
detection and false alarms. 
Based on the reliability of the fall detection and the restriction of false positives, 
which are guaranteed by the fall detection algorithm, we have built a system which 
meets the requirements for deployment and use. 
Moreover, stress detection is a research field that can have a big impact on the 
improvement of people's daily life. In this thesis we presented a stress detection 
system which takes into account three main dimensions of wellbeing. The 
sleeping pattern, the physical activity of the users and their social interaction were 
accumulated with different weight factors and give an estimation of the daily stress 
level of the user. To the best of our knowledge, this is the first system that 
computes a stress score based on different dimensions of human wellbeing. The 
main innovation of this work is addressed in the fact that the way the stress level 
is computed is as less invasive as possible. Our solution relies only on the daily 
phone usage of people. Also we acquire the ground truth for the importance of 
each dimension of wellbeing for each individual by asking the users. This leads 
us to a personalized model which focuses on the personality of each individual 
user. 
The main goal of our stress detection system compared to others is that we are 
trying to be as less invasive as possible. After our experience with end-users and 
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of course after the discussions in the panels of the conferences that we have 
presented our work it has become pretty clear that the end-users will not accept 
to use an invasive wearable device (e.g. a t-shirt or a chest-band) in a daily basis. 
Even if you can ensure them that their stress detection will be pretty accurate they 
will not be willing to use an invasive device for a long period of time. This is the 
main vulnerability of such stress detection systems which are using wearable 
devices to measure the HRV and the GSR of the user and combine them with 
other features in a machine learning model in order to predict stress. 
In StayActive we use only smartphone data for detecting stress. This means that 
the user is not obliged to wear an uncomfortable device that will decrease his 
motivation to use the stress detection system. He can use his smartphone as 
usual and at the same time he will be able to measure his relaxation level.  
Also we acquire the ground truth for the importance of each dimension of 
wellbeing for each individual by asking the users. This leads us to a personalized 
model which focuses on the personality of each individual user. 
To conclude, both of the systems that have been developed for this dissertation 
are very useful applications for the domain of healthcare. The ultimate goal of this 
thesis was to develop health care/monitoring systems and therefore help people 
by improving their quality of life. Both of the systems have been used in 
applications that will be available on the market, transferring directly the scientific 
research into a commercial product. Also both of the systems have been tested 
with real end-users and therefore the research has gone one step further, behind 
the lab trials. This was the main reason that our research had a great impact in 
academic and industrial partners as well, making them willing to create new 
research projects for applying and improving our innovative algorithms. The 
natural next steps after F2D and StayActive are Recover@home and SaB, two 
CTI projects which will go the research presented in this thesis one step further 
and make it applied on new markets.  
Future work 
For both of the systems that we have presented there is space for improvement 
and future directions. More specifically for the fall detection system the main 
innovation that can be further investigated is the test with real falls from elderly 
people. Although we have tested our system, compared with others, with ADL of 
elderly people, in order to make it even more robust we should test it with real falls 
of elderly people. We are in agreement with our industrial partner FST to provide 
the sooner possible our fall detection system to some elderly patients of a clinic 
to wear it for a month and therefore record their ADL’s and possible falls that will 
happen as well. 
Moreover, the context awareness that the location module added to the fall 
detection system is very important for the final scope of this application. Since we 
are targeting the care of elderly people who are in a nursing home, knowing the 
location of the user after a fall is very important. The carer will know in which room 
the elderly has fallen and therefore they will be able to immediately provide the 
help that this person needs. During the last decade, location based services have 
become very popular and the developed indoor positioning systems have reached 
centimeter level accuracy. The problem though is that even if the only requirement 
is room-level accuracy, those systems are most of the times not cost-efficient and 
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not easy to set up. In the past two decades, there has been a continuous rise in 
interest in location-aware applications. After the invention of the Global 
Positioning System (GPS), more and more devices have included a GPS receiver 
and have been using this technology. Especially with the rise of the smartphones, 
these systems have become available on the market at low cost, and are 
nowadays ubiquitous. While the GPS is an exemplary solution for most outdoor 
applications, it is of little use in indoor environments. Therefore, researchers and 
engineers have invented new technologies and systems that can be used for 
indoor localization. 
Our approach to indoor localization is based on the use of Bluetooth beacons. The 
important feature of our approach that distinguishes it from other systems based 
on Bluetooth is that it does not only rely on radio signal quantities. It also takes 
into account the geometry of the rooms the beacons are placed in, i.e. the height 
and the surface area. The measured radio signal quantities typically include the 
received signal strength indicator (RSSI), the link quality, the time of arrival, the 
angle of arrival and the time difference of arrival. In our work we only consider 
positioning based on the RSSI, since it is available in all standard wireless 
communication devices. Naturally in line of sight conditions the performance of 
such a system can be accurate. On the other hand, the RF signals indoors are 
prone to disturbances due to shadowing, fading and the multipath propagation 
phenomenon. These can lead to major errors when estimating distances based 
on the radio signal quantities, since these signals can significantly fluctuate. 
Location information of the user is provided alongside their residual movement in 
order to improve the accuracy and to reduce the false positives of the system. 
Since minimal cost and setup process for the end user were the requirements of 
the localization system, we used the minimum amount of Bluetooth beacons, that 
is one Bluetooth beacon per room, and we opted to develop a more sophisticated 
algorithm for room detection. 
Also there is enough space for improvement and future directions in our stress 
detection system. After testing it with the workers of the public transportation of 
Geneva (TPG) and after recording with questionnaires their feedback we have 
enough user data to take into account. As we have claimed in this thesis, to the 
best of our knowledge StayActive is the first stress detection system which tries 
to detect the relaxation levels of the user taking only smartphone data into 
account. More specifically by using three of the dimensions of wellbeing (sleeping 
pattern, physical activity, social interaction). This data give us enough information 
for the chronic stress level of the user. But in order to make our stress detection 
system more robust we plan to take biosignals (HRV, GSR etc) and therefore the 
acute stress into account. Combining the information for the chronic and the acute 
stress levels of the users we will be able to provide them with more accurate stress 
levels of their daily life. 
More specifically, we have planned to use a non-invasive wearable device such 
as a bracelet in order to measure peaks of acute stress of the users and take them 
into account in the final prediction of the total stress level of the users. In this way, 
we will not be invasive at all and we will be able to combine the data coming from 
the smartphone usage and the biosignals coming from the non-invasive bracelet.  
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Based on the user data by testing our stress detection module with real end- users 
we are confident enough that this extra innovation will make StayActive an even 
more promising solution to the daily life problem of stress. 
Research leads to new projects 
Finally based on the scientific research that has been done for building a robust 
stress detection system, we acquired valuable knowledge and results which gave 
us the opportunity to create new research projects. The first one is called 
Recover@home and it is a CTI (Commission for Technology and Innovation) 
project. The main idea of this project is to build a solution to monitor a patient while 
at home. Technically, the idea is to build an algorithm able to define at what stage 
of the healing process a patient is. To do so, the system will take into account 
different dimensions. For this project, the dimensions we are going to work on are 
gait analysis, sleeping analysis, vital signals analysis and questionnaire feedback. 
The algorithm will be built to be evolutionary and allow the introduction of new 
dimensions at any time. This is a key element that will allow it to stay on the edge 
of what is feasible by taking into account new hardware/technologies available. 
Scientifically, the main focus will be on the gait and sleeping dimensions, as well 
as on the algorithm that will put all the dimensions together (which will require real 
life data analysis). 
The second research project is called SaB (Stress and Burnout) and it is a CTI 
project as well. SaB is a stress monitoring algorithm computing a stress level by 
combining biosignals from a wearable device, behavioral information from a 
smartphone, as well as subjective answers to standard medical questionnaires. 
The goal of the project is to provide a device independent solution for stress 
detection. So the end user will be able to freely choose a wearable device that 
provides at least some specified biosignals (heart rate monitor, galvanic skin 
response). Technically, SaB will be able to identify the behavior and the activity 
level of the user, e.g. working in the office, standing, walking or running. Based on 
that, biosignals coming from the wearable device will be classified. The lifestyle 
choices of the user, the amount of sleep he gets and the way he responds to 
questionnaires will all be taken into account. The key innovation of SaB is the way 
those information from heterogeneous sources with differing conceptual and 
contextual representations will be fused in order to give an indication of the stress 
level of the user, based on a sophisticated algorithm. SaB will be able to identify 
stressful situations in daily life settings and not only in a laboratory environment. 
Our target is to detect stress in a non-invasive way for the user. Information 
gathered from the smartphone will be utilized, but will not suffice for our goal. The 
alternative way to truly approach stress detection is by using biosignals. Bracelets 
and generally wearables have always been a great source of such input. The 
wearable market also saw a rise the last decade, analogous to that of the 
smartphone market, and currently there is a wide variety of sensors available. The 
first approach of our research focused on picking a bracelet that would fit our 
purpose. Generally, the more information the wearable device can provide, the 
better for the research that will take place. The bracelets that for the time being 
seems to be useful for our research is the Microsoft Band 2 (Figure 47) [77], since 
it includes, among others, galvanic skin response, skin temperature and heart rate 
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sensors. It also includes an API to directly access the sensors, a functionality that 
will facilitate our experiments. 

 
Figure 47: Microsoft band 2. 

Since the use of a smartphone will be indispensable to our research, something 
not present in older researches, the users may be asked many questions from a 
predefined pool of questions many times during the day. The reason for this 
selected frequency is to quantify the stress caused by events still in the short-term 
memory of the subject, or ideally in the working memory. Another idea that 
differentiates our approach with the aforementioned questionnaires will be that the 
questions will be mostly delta ones, i.e. "Do you feel better compared to 
yesterday?", so that past and mostly short-term feelings are taken into account in 
a relative way. Sample questions that may be used include: 

 Are you full of energy today? 
 Do you have more time for yourself compared to yesterday? 
 Do you feel tired during the last days? 
 Do you have many worries the last week? 
 Etc. 

 
Although there is a considerable amount of health tracking applications, and an 
equally large amount of health tracking bracelets, very few of them approach the 
topic of stress detection and no solution to the best of our knowledge is accessible 
by everyone. This is exactly what our work is focused on and with our research 
and our experiments we target towards detecting stress in a continuous way. We 
believe that a feasible and non-invasive solution for quantifying stress can be 
achieved by using information coming from a smartphone and biosignals coming 
from a wearable device. With this project, we envision to progress beyond the 
state of the art in the areas of questionnaire designing and data fusing for stress 
detection. 
In terms of research, healthcare is a trending topic. At UNIGE, there is a big focus 
towards using technology in support of healthcare. Our main target for this project 
is the innovation of a patent. We also expect to publish the main findings of the 
project in order to improve the current e-health state-of-the-art. 
Some quantified goals of the project can be summarized as follows: 
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 The stress detection system should be designed and engineered to be 
platform independent in order to run on all major mobile operating 
systems. 

 The input of the stress detection system should be the concerned sensors 
that should not depend on any specific wearable device. 

 The algorithm should be able to identify if the variation of the physiological 
responses is caused by mental stress or by physical activity with an 
accuracy of more than 50%. 

 The application should be able to combine objective data (biosignals, 
smartphone usage) with subjective feedback (questionnaires) to evaluate 
the stress level of the user. 

 The stress detection system should be able to adapt itself to each specific 
user, or generally to the age group the user belongs to. 

 
Expected results: 
The main research direction of the entire project will be an innovative stress 
detection algorithm that allows to compute a stress level by combining biosignals 
from a wearable device, behavioral information from a smartphone, as well as 
subjective answers to standard medical questionnaires.. The client prototype will 
be designed for Android smartphones, but all the design will be done so that it can 
be easily translated for other devices, like iOS.  



 74 74 

Bibliography 
[1] World Health Organization. Definition of an older or elderly person. 2013. 
[Last accessed on 2013 May 22]. Available from: 
http://www.who.int/healthinfo/survey/ageingdefnolder/en/ 
[2] http://www.healthyageing.eu/healthy-ageing-action 
[3] Kellogg International Working Group on the Prevention of Falls by the 
Elderley. The prevention of falls in later life. Dan Med Bull. 1987;34 (Suppl 4):1–
24. [PubMed] 
[4] K. Giannakouris, “Ageing characterises the demographic perspectives of 
the european societies,” Statistics in focus, vol. 72, p. 2008, 2008 
[5] Stevens JA, Ballesteros MF, Mack KA, Rudd RA, DeCaro E, Adler G. 
“Gender differences in seeking care for falls in the aged Medicare Population“. 
Am J Prev Med 2012;43:59–62. 
[6] http://www.medicineonline.com/articles/s/2/Stress-and-the-
Elderly/Stress-and-Seniors.html 
[7] http://www.who.int/mediacentre/factsheets/fs362/en/ 
[8] http://www.who.int/mediacentre/factsheets/fs369/en/ 
[9] http://www.medicineonline.com/articles/s/2/Stress-and-the-
Elderly/Stress-and-Seniors.html 
[10] Affective Computing Group at MIT Media Lab. Automatic stress 
recognition in real-life settings. http://affect.media.mit.edu/projects.php. Accessed 
Feb 2013. 
[11] Muaremi, A., Arnrich, B., Trster, G.: Towards Measuring Stress with 
Smartphones and Wearable Devices During Workday and Sleep. BioNanoSci. 
172-183 (2013). 
[12] http://newsroom.bankofamerica.com/press-releases/consumer-
banking/hold-phone-us-consumers-wouldnt-last-one-day-without-access-their-
sm 
[13] https://testobject.com/blog/2016/01/smartphones-mobile-internet-
changed-our-life.html 
[14] Brown, G. (2005). “An accelerometer based fall detector: Development, 
experimentation, and analysis”. In: EECS/SUPERB. 
[15] Ryynanen, O. P. et al. (1992). “Falls and Lying Helpless in the Elderly”. 
In: Z Gerontol. 2, pp. 278–82. 
[16] Lord, R., C. Sherrington, and HB. Menz (2003). “Falls in older people: risk 
factors and strategies for prevention”. In: Injury Prevention, pp. 91–95. 
[17] Nevit, MC. et al. (1989). “Risk factors for recurrent nonsyncopal fall. A 
prospective study”. In: J Am Med Ass. 
[18] H. Gjoreski, M. Luštrek  and M. Gams “Context-Based Fall Detection 
using Inertial and Location Sennsors” in Third International Joint Conference, AmI 
2012, Pisa, Italy, Novemnber 13-15, 2012. 

http://www.ncbi.nlm.nih.gov/pubmed/3595217


 75 
75 Bibliography 

[19] https://en.wikipedia.org/wiki/Health_care_in_the_United_States 
[20] Friedman SM, Munoz B, West SK, Rubin GS, Fried LP. Falls and Fear of 
Falling: Which Comes First? A Longitudinal Prediction Model Suggests Strategies 
for Primary and Secondary Prevention. J Am Geriatr Soc.2002;50:1329–1335. 
doi: 10.1046/j.1532-5415.2002.50352.x. 
[21] Scheffer AC, Schuurmans MJ, van Dijk N, van der Hooft T, de Rooij SE. 
Fear of falling: measurement strategy, prevalence, risk factors and consequences 
among older persons. Age Ageing. 2008. 
[22] Brownsell S, Hawley MS. Automatic fall detectors and the fear of falling. 
J Telemed Telecare. 2004;10:262–266. doi: 10.1258/1357633042026251. 
[23] Noury N, Fleury A, Rumeau P, Bourke AK, Laighin GO, Rialle V, Lundy 
JE. Proceedings of the Annual International Conference of the IEEE Engineering 
in Medicine and Biology Society. Lyon: Institute of Electrical and Electronics 
Engineers; 2007. Fall detection - principles and methods; pp. 1663–1666. 
[24] Bagala F, Becker C, Cappello A, Chiari L, Aminian K, Hausdorff JM, 
Zijlstra W, Klenk J. Evaluation of Accelerometer-Based Fall Detection Algorithms 
on Real-World Falls. PLoS One. 2012;7:e37062. doi: 
10.1371/journal.pone.0037062. 
[25] Noury N, Rumeau P, Bourke AK, OLaighin G, Lundy JE. A proposal for 
the classification and evaluation of fall detectors. Irbm. 2008;29:340–349. doi: 
10.1016/j.irbm.2008.08.002. 
[26] Perry JT, Kellog S, Vaidya SM, Youn JH, Ali H, Sharif H.Proceedings of 
the 6th International Symposium High-Capacity Optical Networks and Enabling 
Technologies.Alexandria: Institute of Electrical and Electronics Engineers; 2009. 
Survey and evaluation of real-time fall detection approaches; pp. 158–164. 
[27] Mubashir M, Shao L, Seed L. A survey on fall detection: Principles and 
approaches. Neurocomputing.2012;100:144–152. 
[28] H. Nait-Charif and S. McKenna, “Activity summarisation and fall detection 
in a supportive home environment,” in Proc 17th Inte Conf Patt Recog. Cambridge 
UK, 2004. 
[29] Y. Lee and H. Lee, “Multiple object tracking for fall detection in realtime 
surveillance system,” in Proc 11th Int Conf Adv Commn Tec, 2009. 
[30] B. Huang, G. Tian, and X. Li, “A method for fast fall detection,” in Proc 7th 
World Congr Intell Contr Autom, 2008. 
[31] M. Alwan, P. Rajendran, S. Kell, D. Mack, and S. Dalal, “A smart and 
passive floor-vibration based fall detector for elderly,” in Proc. ICTTA’ 06, 2006. 
[32] D. Litvak, Y. Zigel, and I. Gannot, “Fall detection of elderly through floor 
vibrations and sound,” in Proc 30th IEEE EMBS Ann Int Conf, 2008. 
[33] J. Hwang, J. Kang, Y. Jang, and H. Kim, “Development of novel algorithm 
and real-time monitoring ambulatory system using Bluetooth module for fall 
detection in the elderly,” in Proc 26th IEEE EMBS Ann Int Conf, 2004. 



 76 76 

[34] F. Sposaro and G. Tyson, “ifall: An android application for fall monitoring 
and response,” in Engineering in Medicine and Biology Society, 2009. EMBC 
2009. Annual International Conference of the IEEE, 2009.  
[35] J. Dai, X. Bai, Z. Yang, Z. Shen, and D. Xuan, “Perfalld: A pervasive fall 
detection system using mobile phones,” in Pervasive Computing and 
Communications Workshops (PERCOM Workshops), 2010 8th IEEE International 
Conference on, 2010. 
[36] M. Dumitrache and S. Pasca, “Fall detection algorithm based on triaxial 
accelerometer data,” in E-Health and Bioengineering Conference (EHB), 2013, 
2013. 
[37] B. Aguiar, T. Rocha, J. Silva, and I. Sousa, “Accelerometer-based fall 
detection for smartphones,” in Medical Measurements and Applications (MeMeA), 
2014 IEEE International Symposium on, 2014. 
[38] S. Madhubala, J. Umamakeswari, and J.A. Rani B, “A survey on technical 
approaches in fall detection system,” in National Journal of Physiology, Pharmacy 
and Pharmacology. 
[39] X. Yu, Approaches and Principles of Fall Detection for Elderly and Patient, 
10th IEEE International Conference on e-Health Networking, Applications and 
Services (HealthCom), pp. 42–47, 2008. 
[40] Ozcan, K. et al. (2013). “Automatic Fall Detection and Activity 
Classification by a Wearable Embedded Smart Camera”. In: Emerging and 
Selected Topics in Circuits and Systems, IEEE Journal on. Vol. 3. 2, pp. 125–136. 
[41] Doughty, K., Lewis, R., and McIntosh, A. (2000). The desigh of a practical 
and reliable fall detector for community and institutional telecare. In Journal of 
Telemedicine and Telecare. 
[42] He, Y., Li, Y., and Bao, S.-D. (2012). Fall detection by built-in tri-
accelerometer of smartphone. In Biomedical and Health Informatics (BHI), 2012 
IEEE-EMBS International Conference on. 
[43] Hou, Y., Li, N., and Huang, Z. (2012). Triaxial accelerometer-based real 
time fall event detection. In Information Society (i-Society), 2012 International 
Conference on. 
[44] Li, Y., Chen, G., Shen, Y., Zhu, Y., and Cheng, Z. (2012). Accelerometer-
based fall detection sensor system for the elderly. In Cloud Computing and 
Intelligent Systems (CCIS), 2012 IEEE 2nd International Conference on. 
[45] Eurostat, Health and safety at work in Europe (1999-2007), a statistical 
portrait, European Commission, Employment, Social Affairs and Equal 
Opportunities, 2010. 
[46] Seoyeon Choi, Soocheol Kim, Jung-Sik Yang, Jung-Hyun Lee, Chulmin 
Joo, Hyo-Il Jung, Real-time measurement of human salivary cortisol for the 
assessment of psychological stress using a smartphone, Sensing and Bio-
Sensing Research, Volume 2, December 2014, Pages 8-11, ISSN 2214-1804, 
http://dx.doi.org/10.1016/j.sbsr.2014.08.001. 



 77 
77 Bibliography 

[47] Venugopal M, Arya SK, Chornokur G, Bhansali S, A Realtime and 
Continuous Assessment of Cortisol in ISF Using Electrochemical Impedance 
Spectroscopy, Sens Actuators A Phys. 2011 Dec 1;172(1):154-160. 
[48] Hong Peng, Bin Hu , Fang Zheng, Dangping Fan, Wen Zhao, Xuebin 
Chen, Yongxia Yang, Qingcui Cai, A method of identifying chronic stress by EEG, 
Personal and Ubiquitous Computing, October 2013, Volume 17, Issue 7, pp 1341-
1347. 
[49] https://www.spire.io/ 
[50] https://www.microsoft.com/cognitive-services/en-us/computer-vision-api 
[51] Li, Xiaobai, et al. "Reading Hidden Emotions: Spontaneous Micro-
expression Spotting and Recognition." arXiv preprint arXiv:1511.00423 (2015). 
[52] T. G. Vrijkotte, L. J. van Doornen, and E. J. de Geus, "Effects of work 
stress on ambulatory blood pressure, heart rate, and heart rate variability.," 
Hypertension, vol. 35, no. 4, pp. 880–6, Apr. 2000. 
[53] R. K. Dishman, Y. Nakamura, M. E. Garcia, R. W. Thompson, A. L. Dunn, 
and S. N. Blair, "Heart rate variability, trait anxiety, and perceived stress among 
physically fit men and women," Int. J. Psychophysiol., vol. 37, no. 2, pp. 121–133, 
Aug. 2000. 
[54] J. Hernandez, R. R. Morris, and R. W. Picard, "Call Center Stress 
Recognition with Person-Specific Models," in Affective Computing and Intelligent 
Interaction, vol. 6974, pp. 125–134, 2011), (C. Setz, B. Arnrich, J. Schumm, R. La 
Marca, G. Tröster, and U. Ehlert, "Discriminating stress from cognitive load using 
a wearable EDA device.," IEEE Trans. Inf. Technol. Biomed., vol. 14, no. 2, pp. 
410–7, Mar. 2010. 
[55] S. S. Dickerson and M. E. Kemeny, "Acute stressors and cortisol 
responses: a theoretical integration and synthesis of laboratory research.," 
Psychol. Bull., vol. 130, no. 3, pp. 355–91, May 2004), (M. van Eck, H. Berkhof, 
N. Nicolson, and J. Sulon, "The effects of perceived stress, traits, mood states, 
and stressful daily events on salivary cortisol.," Psychosom. Med., vol. 58, no. 5, 
pp. 447–58, 1996. 
[56] F. Mokhayeri, M.-R. Akbarzadeh-T, and S. Toosizadeh, "Mental stress 
detection using physiological signals based on soft computing techniques," in 
2011 18th Iranian Conference of Biomedical Engineering (ICBME), 2011, pp. 
232–237. 
[57] N. Breslau, R. Kessler, and E. L. Peterson. Post-traumatic stress disorder 
assessment with a structured interview: reliability and concordance with a 
standardized clinical interview. International Journal of Methods in Psychiatric 
Research, 7(3):121{127, 1998. 
[58] T. Vrijkotte and et al. Effects of work stress on ambulatory blood pressure, 
heart rate, and heart rate variability. Hypertension, 35(4):880 {886, 2000. 
[59] U. Lundberg and et al. Psychophysiological stress and EMG activity of the 
trapezius muscle. International Journal of Behavioral Medicine, 1(4):354 {370, 
1994. 
[60] S. Cohen, T. W. Kamarck, and R. Mermelstein, “A global measure of 
perceived stress,” in Journal of Health and Social Behavior, 1983, pp. 1027–1035. 



 78 78 

[61] A. Sano and R. W. Picard, “Stress recognition using wearable sensors 
and mobile phones,” in Humaine Association Conference on Affective Computing 
and Intelligent Interaction, 2013, pp. 671–676. 
[62] R. Norris, D. Carroll, and R. Cochrane, “The effects of physical activity 
and exercise training on psychological stress and well-being in an adolescent 
population,” in Journal of Psychosomatic Research, 1992, pp. 55–65. 
[63] Moturu, S., Khayal, I., Aharony, N., Pan, W., Pentland, A.: Sleep, Mood 
and Sociability in a Healthy Population. In: 33rd Annual International Conference 
of the IEEE EMBS. 5267-5270 (2011). 
[64]  Lane, N.D., et al.: BeWell: A Smartphone Application to Monitor, Model 
and Promote Wellbeing. In: 5th ICST/IEEE Conference on Pervasive Computing 
Tech- nologies for Healthcare IEEE Press. 23-26 (2011). 
[65] Li, S., Chung, T.: Internet function and Internet addictive behavior. In: 
Computers in Human Behavioor. 1067-1071 (2006). 
[66] Oulasvirta, A., Rattenbury, T., Ma, L., Raita, E.: Habits make smartphone 
use more pervasive. In: Personal and Ubiquitous Computing. 105-114 (2012). 
[67] Rimmele, U., Seiler, R., Wirtz, PH., Ehlert, U., Heinrichs, M.: The level of 
physical activity affects adrenal and cardiovascular reactivity to phychosocial 
stress. In: Psychoneuroendocrinology. 190-198 (2009). 
[68] Fox, K.R.: The Inuence of Physical Activity on Mental Well-being. In: 
PublicHealth Nutrition l. 411-418 (1999). 
[69] Paffenbarger, R.S., Hyde, R., Wing, A.L., Hsieh, C.: Physical Activity, All-
cause Mortality, and Longevity of College Alumni. New England journal of 
medicine. 605-613 (1986). 
[70] P. Kostopoulos, T. Nunes, K. Salvi, M. Deriaz, and J. Torrent, “Increased 
fall detection accuracy in an accelerometer-based algorithm considering residual 
movement,” in International Conference on Pattern Recognition Applications and 
Methods, 2015. 
[71] Habib, M. A., Mohktar, M. S., Kamaruzzaman, S. B., Lim, K. S., Pin, T. 
M., and Ibrahim, F. (2014). Smartphone-based solutions for fall detection and 
prevention: challenges and open issues. In http://www.mdpi.com/journal/sensors. 
[72] P. Kostopoulos, T. Nunes, K. Salvi, M. Deriaz, and J. Torrent, “F2d: A fall 
detection system tested with real data from daily life of elderly people,” in IEEE 
Healthcom 2015, 2015. 
[73] P. Kostopoulos, A.I. Kyritsis, M. Deriaz, and D. Konstantas, “F2D: A 
location aware fall detection system tested with real data from daily life of elderly 
people,” in ICTH 2016. 
[74] Panagiotis Kostopoulos, Tiago Nunes, Kevin Salvi, Michel Deriaz and 
Mauricio Togneri, StayActive: An Application for Detecting Stress, in proceedings 
of the fourth International Conference on Communications, Computation, 
Networks and Technologies (INNOV 2015), Barcelona, Spain, November 2015. 
[75] Panagiotis Kostopoulos, Athanasios Kyritsis, Michel Deriaz and Dimitri 
Konstantas, Stress detection using smartphone data, in proceedings of the EAI 



 79 
79 Bibliography 

International Conference on Wearables in Healthcare (HealthWear) co-located 
with eHealth 360 Summit, Budapest, Hungary, June 2016. 
[76] Holly B. Jimison and Misha Pavel, Real-Time Measures of Context to 
Improve Fall-Detection Models, in the 38th Annual International Conference of the 
Engineering in Medicine and Biology society (EMBC), 2016. 
[77] https://www.microsoft.com/microsoft-band/ 
[78] Rusell, A.James.: A circumplex model of affect. Journal of Personality and 
Social Psychology. 1161-1178 (1980). 
[79] Likamwa, Robert et al. “Can Your Smartphone Infer Your Mood?.” (2011). 
[80] Jorn Bakker, Mykola Pechenizkiy, and Natalia Sidorova. 2011. What's 
Your Current Stress Level? Detection of Stress Patterns from GSR Sensor Data. 
In Proceedings of the 2011 IEEE 11th International Conference on Data Mining 
Workshops (ICDMW '11). IEEE Computer Society, Washington, DC, USA, 573-
580. 

[81] A. F. Westin, Privacy and Freedom. Bodley Head, 1970. 

[82] http://www.dantest.com/dtr_ans_overview.htm 

[83] W.C Cheng and D.M Jhan: Triaxial Accelerometer-Based Fall Detection 
Method Using a Self-Constructing Cascade-AdaBoost-SVM Classifier. In IEEE 
Journal of Biomedical and Health Inforrmatics, March 2013. 
[84] Lonnie C. Ludeman. Random processes: filtering, estimation, and 
detection. Wiley-IEEE Press, 2003. 
[85] G. Lu, D. De, M. Xu, et. al. TelosW: enabling ultra-Low power wake-on 
sensor network. In Proc. IEEE International Conference on Networked Sensing 
Systems, Kassel, Germany, pp 211-218, 2010. 
[86] Guo, R. et al. “Pervasive and unobtrusive emotion sensing for human 
mental health”, 7th International Conference on Pervasive Computing 
Technologies for Healthcare, Venice. Brussels: ICST. (doi: 
10.4108/icst.pervasivehealth.2013.252133)(2013, May 5–8). 
[87] Kumar, M. et al. “Stress monitoring based on stochastic fuzzy analysis of 
heartbeat intervals”, IEEE Trans. Fuzzy Syst. 20(4), 746–759 (2012). 
[88] S. Yoon, J.K. Sim and Y.H. Cho “A Flexible and Wearable Human Stress 
Monitoring Patch”, Scientific reports 6 (2016). 
[89] http://emvio.watch/ 
[90] https://www.empatica.com/ 
[91] Choi, J., Ahmed, B. & Gutierrez-Osuna, R. “Development and evaluation 
of an ambulatory stress monitor based on wearable sensors”, IEEE T. Inf. 
Technol. Biomed. 16(2), 279–286 (2012). 
[92] P. Pierleoni, A. Belli, L. Palma, M. Pellegrini, L. Pernini and S. Valenti, "A 
High Reliability Wearable Device for Elderly Fall Detection," in IEEE Sensors 
Journal, vol. 15, no. 8, pp. 4544-4553, Aug. 2015. 
[93] J. Diebel, “Representing attitude: Euler angles, unit quaternions, and 
rotation vectors,” Matrix, vol. 58, pp. 15–16, 2006. 



 80 80 

[94] P. Liu and H. Li, “Approximation of stochastic processes by T-S fuzzy 
systems,” Fuzzy Sets Syst., vol. 155, no. 2, pp. 215–235, 2005. 
[95] C. Shepard, A. Rahmati, C. Tossell, L. Zhong and P. Lortum, “LiveLab: 
measuring wireless networks and smartphone users in the field”, in ACM 
SIGMETRICS Perform. Eval. Rev., vol. 38, no. 3, 2010. 
[96] H. Hashemi, “The indoor radio propagation channel,” Proceedings of 
the IEEE, vol. 81, no. 7, pp. 943–968, Jul 1993. 
[97] A. G. Lalkhen and A. McCluskey, “Clinical tests: sensitivity and 
specificity,” in Contin Educ Anaesth Crit Care Pain (2008) 8 (6): 221-223 
doi:10.1093/bjaceaccp/mkn041, 2008. 
[98] https://en.wikipedia.org/wiki/Partial_least_squares_regression. 
[99] https://en.wikipedia.org/wiki/Random_forest. 
[100] https://en.wikipedia.org/wiki/Gradient_boosting. 
[101] https://en.wikipedia.org/wiki/Support_vector_machine. 
[102] https://en.wikipedia.org/wiki/Cross-validation_(statistics) 
 
 



 81 
81 Publications related to this Ph.D. 

Publications related to this Ph.D. 

As first author: 
1. Panagiotis Kostopoulos, Tiago Nunes, Kevin Salvi, Michel Deriaz and 

Julien Torrent, Increased Fall Detection Accuracy in an 
Accelerometer-Based Algorithm Considering Residual Movement, in 
proceedings of the fourth International Conference on Pattern 
Recognition Applications and Methods (ICPRAM), Lisbon, Portugal, 
January 2015. 

2. Panagiotis Kostopoulos, Tiago Nunes, Kevin Salvi, Michel Deriaz and 
Julien Torrent, F2D: A fall detection system tested with real data from 
daily life of elderly people, in proceedings of the seventeenth 
International Conference on E-health Networking, Applications and 
Services (IEEE HealthCom’15), Boston, USA, October 2015. 

3. Panagiotis Kostopoulos, Tiago Nunes, Kevin Salvi, Michel Deriaz and 
Mauricio Togneri, StayActive: An Application for Detecting Stress, in 
proceedings of the fourth International Conference on Communications, 
Computation, Networks and Technologies (INNOV 2015), Barcelona, 
Spain, November 2015. 

4. Panagiotis Kostopoulos, Athanasios Kyritsis, Michel Deriaz and Dimitri 
Konstantas, Stress detection using smartphone data, in proceedings 
of the EAI International Conference on Wearables in Healthcare 
(HealthWear) co-located with eHealth 360 Summit, Budapest, Hungary, 
June 2016. 

5. Panagiotis Kostopoulos, Athanasios Kyritsis, Michel Deriaz and Dimitri 
Konstantas, F2D: A location aware fall detection system tested with 
real data from daily life of elderly people, in proceedings of the sixth 
International Conference on Current and Future Trends of Information 
and Communication Technologies in Healthcare (ICTH), London, United 
Kingdom, September 2016. 
 

As co-author: 
1. Athanasios Kyritsis, Panagiotis Kostopoulos, Michel Deriaz and Dimitri 

Konstantas, A ble-based probabilistic room-level localization 
method, in Proceedings of the sixth International Conference on 
Localization and GNSS (ICL-GNSS), Barcelona, Spain, October 2016. 

 


	From fall detection to stress pattern using smart devices
	Panagiotis Kostopoulos
	Résumé
	_Toc266378938
	_Toc266378939
	_Toc266378940
	_Toc283984674
	_Toc283984675
	_Toc283984676
	_Toc283985664
	_Toc283985665
	_Toc283985666
	_Toc285967510
	_Toc285967511
	_Toc285967512
	_Toc288737565
	_Toc288737566
	_Toc288737567
	_Toc450034695
	_Toc450034696
	_Toc455500159
	_Toc461695189
	_Toc496607134
	Abstract
	_Toc496607135
	Acknowledgements
	_Toc455500161
	_Toc496607136
	List of figures
	_Toc266378942
	_Toc283984678
	_Toc283985668
	_Toc285967514
	_Toc288737569
	_Toc455500163
	_Toc496607137
	List of tables
Table 1:Different profiles.	50
Table 2: Locations in the office with an accuracy change.	54
Table 3: Per room accuracy comparison in the office.	54
Table 4: Locations in the house with an accuracy change.	57
Table 5: Per room accuracy comparison in the house.	57
Table 6: Accuracy results	82
	_Toc266378943
	_Toc283984679
	_Toc283985669
	_Toc285967515
	_Toc288737570
	_Toc455500164
	_Toc496607138
	_Toc455500165
	_Toc496607139
	1. Introduction
	1.1 Elderly and health problems

	_Ref387320632
	_Toc455582410
	_Toc461695195
	_Toc461695196
	_Toc495482118
	_Toc496607140
	_Toc496607141
	1.2 Falls and elderly people

	_Toc461695200
	_Toc496607142
	1.3 People, smartphones and stress

	_Toc496607143
	_Toc495482119
	1.4 Solutions

	_Toc461695205
	_Toc496607144
	2. Fall detection
	2.1 State of the art

	_Toc461695206
	_Toc461695207
	_Toc496607145
	_Toc496607146
	_Toc495482120
	_Toc495482121
	_Toc495482122
	_Toc495482123
	_Toc495482124
	2.2 Theoretical model and implementation

	_Toc495482125
	_Toc496607147
	_Toc461695224
	_Toc495482126
	_Toc461695225
	_Toc461695226
	_Toc495482127
	_Toc495482128
	_Toc461695227
	_Toc455500209
	_Toc461695228
	_Toc495482129
	_Toc495482130
	_Toc495482131
	_Toc495482132
	_Toc495482133
	_Toc495482134
	_Toc495482112
	_Toc495482135
	_Toc495482136
	_Toc495482137
	_Toc495482113
	_Toc495482114
	_Toc495482138
	_Toc495482139
	_Toc495482140
	_Toc495482115
	_Toc495482141
	2.3 Discussion and comparison

	_Toc495482116
	_Toc496607148
	2.4 Personal contribution

	_Toc496607149
	3. Stress detection
	3.1 State of the art

	_Toc496607150
	_Toc496607151
	_Toc495482142
	_Toc495482143
	_Toc495482144
	_Toc495482145
	_Toc495482146
	_Toc495482147
	_Toc495482148
	3.2 Theoretical model and implementation

	_Toc496607152
	_Toc495482149
	_Toc495482150
	_Toc495482151
	_Toc495482152
	_Toc495482153
	_Toc495482154
	_Toc495482155
	_Toc495482156
	_Toc495482157
	_Toc495482158
	_Toc495482159
	_Toc495482160
	 
	 
	 
	Selection of modelling technique




	_Toc495482161
	selection-of-modelling-t
	models-comparisson-asses
	_Toc495482117
	_Toc495482162
	_Toc495482163
	3.3 Discussion and comparison

	_Toc496607153
	3.4 Personal contribution

	_Toc496607154
	4. Discussion
	4.1 Limitations

	_Toc496607155
	_Toc496607156
	5. Conclusion and future work
	_Toc461695262
	_Toc461695263
	_Toc496607157
	_Toc495482164
	Bibliography
	_Toc496607158
	Publications related to this Ph.D.
	_Toc266378941
	_Toc283984677
	_Toc283985667
	_Toc285967513
	_Toc288737568
	_Toc455500162
	_Toc495482086
	_Toc496607159

