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Abstract

As human beings, we rely on audible sounds as one way to communicate
between each other and to infer information about our surrounding environment.
Similarly, ultrasounds are used by some species in the animal kingdom to sense
objects around them and get relevant information about their environment. In
this thesis, we build on the inherent characteristics of ultrasounds and explore
their application in occupancy sensing of indoor spaces, as ultrasounds exhibit
interesting advantages compared to other technologies. Specifically, we design
methods and algorithms to generate and process ultrasonic signals and infer the
room occupancy, and we develop systems to evaluate their performance.
Throughout the work, we address the implementation of our methods using
commodity hardware, we pay attention to design algorithms that are
computationally efficient, and we evaluate their time and space complexity. We
focus on the reusability aspects in our designs, with the aim of bringing the
technology to a wide range of existing and potential commercial devices, that
would be able to implement our methods and algorithms seamlessly, and offer
insights for new applications (like improving users' experience, enhancing home
automation, etc.).

This thesis brings four main contributions. We start off by presenting our solution
for a device-based occupancy detection system, in which the room occupancy is
determined using people's smartphones. The system wouldn’t be robust, unless
the problem of signal interference and packet collision is mitigated. Therefore,
we show how collisions could be detected, and propose a solution to reduce their
occurrence probability.

Then, we move on to address device-free occupancy sensing, where we sense the
presence of persons without requiring them to carry or wear any devices. In this
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Abstract

regard, our contribution is a self-calibrating motion sensing system that is based
on the Doppler effect. We show how unsupervised learning can be used to auto-
calibrate the parameters of the system without prior information of the installation
environment.
While active ultrasonic motion sensing offers a higher accuracy, it generally
consumes more energy than traditional passive sensing technologies (like passive
infrared sensors). To alleviate this limitation, our third contribution is a novel
automatic power switching method that can reduce the energy consumption of
the sensors. The method, which we call “power hopping”, allows a motion sensor
to optimize its transmit power in function of the surrounding environment's
conditions, and is automatically triggered every time the layout of the
environment is detected to have changed.
In our last contribution, we address the sensing of still persons. For this, we
explore the use of reflection patterns of ultrasonic signals. We show how we can
process the signals and make use of supervised learning techniques, to accurately
detect the presence of still persons, even in low signal-to-noise ratio conditions.
All of the presented methods and algorithms were experimentally evaluated using
working prototypes. To summarize this dissertation, we discuss how our proposed
methods and algorithms can be applied to make devices and appliances smarter,
more aware and responsive to their users. These include smartphones, digital
speaker assistants, PCs, smart TVs, and virtually any devices equipped with sound
speakers and microphones.

Keywords: Ultrasound, Occupancy sensing, Persons detection, Indoor
localization, Frequency/Time analysis, Machine learning, Smart Environments,
Environment sensing, Motion sensors, Power switching
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Résumé

En tant qu’êtres humains, nous utilisons les sons audibles comme moyen de
communiquer entre nous et pour en inférer des informations sur notre
environnement ambiant. D’une façon similaire, les ultrasons sont utilisés par
certaines espèces animales pour détecter les objets qui les entourent et obtenir
des informations pertinentes sur leur environnement.

Dans cette thèse, en partant des caractéristiques intrinsèques des ultrasons, nous
explorons leur application dans la détection de présence dans les espaces intérieurs.
En effet, les ultrasons présentent des avantages intéressants par rapport aux autres
technologies. Plus précisément, nous créonsdes méthodes et des algorithmes pour
générer et traiter les signaux ultrasonores et déduire la présence des personnes,
tout en développant des systèmes pour évaluer leur performance. Tout au long de
ce travail, nous abordons la mise en œuvre de nos méthodes à l’aide de matériel
de base, nous mettons l’accent sur la conception d’algorithmes efficaces, et nous
évaluons leur complexité temporelle et spatiale. De plus, en ce qui concerne nos
conceptions, nous nous concentrons sur les aspects de réutilisabilité dans le but
d’apporter la technologie à un large éventail de produits commerciaux existants
et potentiels, qui seraient capables d’intégrer nos méthodes et algorithmes d’une
façon transparente, et d’ouvrir la porte pour de nouvelles applications (comme
améliorer l’expérience des utilisateurs, l’automation domestique...)

Cette thèse présente quatre contributions principales. Tout d’abord, nous
commençons par présenter notre solution pour un système de détection
d’occupation basé sur un appareil, dans lequel l’occupation de la pièce est
déterminée à l’aide des smartphones des gens. Le système ne serait pas robuste,
sauf si le problème d’interférence de signal et de collision de paquets est résolu.
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Par conséquent, nous montrons comment les collisions peuvent être détectées et
proposons une solution pour réduire leur probabilité d’occurrence.

Ensuite, nous abordons la question de la détection de présence sans appareil. Ici,
nous détectons la présence de personnes sans qu’elles aient à porter d’appareil. À
cet égard, notre contribution est un système de détection de mouvement
auto-calibrant basé sur l’effet Doppler. Nous montrons comment l’apprentissage
non supervisé peut être utilisé pour auto-calibrer les paramètres du système sans
information préalable sur l’environnement d’installation.

Bien que la détection active de mouvement par ultrasons offre une plus grande
précision, elle consomme généralement plus d’énergie que les technologies
traditionnelles de détection passive (comme les capteurs infrarouges passifs).
Pour remédier à cette limitation, notre troisième contribution est une nouvelle
méthode de changement automatique de puissance qui peut réduire la
consommation d’énergie des capteurs. La méthode, que nous appelons "power
hopping", permet à un capteur de mouvement d’optimiser sa puissance
d’émission en fonction des conditions de l’environnement, et se déclenche
automatiquement chaque fois que la disposition de l’environnement est détectée
comme ayant changé.

Dans notre dernière contribution, nous abordons la perception des personnes
immobiles. Pour cela, nous explorons l’utilisation de modèles de réflexion de
signaux ultrasonores. Nous montrons comment nous pouvons traiter les signaux
et utiliser des techniques d’apprentissage supervisées afin de détecter avec
précision la présence de personnes immobiles, même dans des conditions de faible
rapport signal/bruit.

Tous les méthodes et algorithmes présentés ont été évalués expérimentalement
à l’aide de prototypes fonctionnels. Pour résumer cette thèse, nous discutons
comment ces méthodes et algorithmes proposés peuvent être appliqués pour rendre
les dispositifs et appareils plus intelligents, plus conscients et plus réactifs à leurs
utilisateurs. Il s’agit notamment des smartphones, des assistants haut-parleurs
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numériques, des PC, des téléviseurs intelligents et pratiquement tous les appareils
équipés de haut-parleurs et de microphones.

mots clés: Ultrasons, Détection de présence, Localisation intérieure, Analyse de
fréquence/temporaire, Apprentissage automatique, Environnements intelligents,
Détecteurs de mouvement, Changement de puissance
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1 Introduction

1.1 Everything Is Getting Smart

Smart buildings, systems, and appliances continue to flourish nowadays, driving
a rapidly evolving internet-of-things (IoT) that promises to radically improve the
quality of life of people, and promote their comfort, health and well-being. With
this, the need is increasing for smart sensing solutions that serve as the eyes, ears
and skin for the various systems, feeding them with useful context information
about their surrounding environment. As smart systems are built around the needs
of their users, sensing their presence and inferring the occupancy state of the indoor
environments remain one of the most vital information for these systems. People
spend most of their time indoors, it is estimated that the average person stays
indoors approximately 90% of his time [1]. Inside their homes, office buildings,
shopping malls, etc. people interact with a wide range of systems and appliances.
Occupancy information make the systems seamlessly aware of and responsive to
the inhabitants, and allow the systems to customize their operation to satisfy
users' needs.
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Chapter 1. Introduction

1.2 Anyone There?

In our everyday life, we need to tell the systems we interact with about our
presence, every time the occupancy sensors are missing or are not adequate. You
walk into a room where the lights are off and it is dark, if the lights do not
recognize your presence themselves, then you need to look for the switch
manually and turn them on. You like your home to be warm during winter and
cool in summer when you and your family are inside, but if you care about your
heating or cooling costs, you would like the systems to shut down when no one is
there. If the systems can not sense your presence, you need to switch them off
manually every time you are away, then switch them on again when you are back.
So on and so forth. Instead of having to communicate our presence manually to
the systems, smart occupancy sensing solutions were established with the aim of
offering an automated and seamless means of detecting the presence of people in
indoor spaces, and allowing them to customize their operation accordingly.

When it comes to examples of the applications of occupancy sensing, the list goes
endlessly: When you are on vacation, you need to know when someone enters your
home while you don’t expect guests. You may like your noisy washing machine
to run only when you leave your apartment. When the oven is overheating and
nobody is there to watch, you want it to analyze the situation and switch off
automatically. In your company, you have a business meeting with some clients,
and would like to check directly if any of the meeting rooms is available, without the
need to go and knock on each one of them. If you can think of similar applications
in your daily routines, then scale this up by the countless possibilities that are
triggered by an increasing population, and a rapidly evolving IoT, to get an idea
of how essential occupancy sensors are becoming to our everyday life.

2



1.3. The Applications

1.3 The Applications

Occupancy sensing is becoming a crucial part of our nowadays systems, especially
with the increasing interest in smart systems and buildings, and the continuous
growth of IoT. Indoor occupancy information paves the way for a wide range of
applications and services. Here are some fields of applications where occupancy
information is essential:

• HVAC systems: Heating, Ventilation, and Air Conditioning (HVAC) systems
are designed to guarantee thermal comfort for the occupants and air quality
in indoor spaces. Therefore, occupancy information of these spaces allows
the systems to adjust their performance to satisfy the occupants.

• Energy efficiency: Heating and cooling systems account for a large fraction of
buildings' energy consumption [2, 3]. In addition to the comfort, occupancy
information allows these systems to shut down or reduce their performance
when there are no occupants, in order to save energy costs. This also applies
to electric appliances that can be turned off when no person is there, like a
TV, a PC, or a voice digital assistant.

• Lighting control: Lights are generally needed when the corresponding places
are occupied, and they can be dimmed or switched off when these places are
vacant, to save energy and extend their lifetime.

• Emergency response: In the case of emergencies, occupancy information is
crucial to guarantee efficient evacuation, or to timely locate any persons in
need of help, and guide the first responders towards them.

• Security: Occupancy sensing allows the detection of unwanted intruders in
prohibited access places, or to guarantee the safety of persons in hazardous
zones (like factories, construction sites, etc.).

3
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• Assisted living: Some segments of the population need assistance in their
everyday life, especially elder adults, dementia patients, and impaired
persons. Occupancy sensing solutions can enhance a smart home, where
these persons can enjoy their autonomy, while benefiting from adequate
assistance (personal or digital).

4
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1.4 Ultrasounds

Ultrasounds are sound waves above the human hearing limit, and share similar
physical properties with the audible acoustic waves. The human hearing
capability is limited to a certain frequency range, considered to be between 20Hz
and 20kHz [4]. Sound waves above 20kHz are non-audible and are called
ultrasound. Figure 1.1 shows the frequency ranges of sound waves, which can be
categorized into infrasound, audible sound, and ultrasound.

Figure 1.1: Frequency ranges of acoustic signals

The ultrasound technology has long been employed in different fields of
applications due to their unique characteristics. Applications include:

• Ranging: accurate distance measurements.

• Medical imagery: diagnostic sonography.

• Non-destructive testing: quality of industrial products.

• Fluids characteristics: flow of fluids inside pipes, blood flow in veins.

The use of ultrasound technology for occupancy sensing offers some interesting
advantages. So what are the main ones?

Room-level occupancy: Because of their nature, ultrasonic waves are inherently
limited by walls and doors, which makes them an excellent choice to achieve room-
level granularity, as compared to other RF-based technologies (WiFi, Bluetooth,
X-band, etc).

5
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Beyond line-of-sight: While many sensing technologies need a line-of-sight
(LOS) with the occupants (like infrared-based, video cameras), ultrasounds
propagate around objects and can cover what is behind LOS.

Commercial hardware support: Another interesting fact is that most
commercial devices (speakers, microphones, smartphones) support a certain
frequency range of ultrasound, namely that of 20-22kHz. The common sampling
rate used in sound cards is 44.1kHz, while some use an even higher rate (48, 96,
or 192kHz). This rate determines the Nyquist frequency, which is the maximum
frequency that speakers and microphones can support, and is equal to half of the
sampling rate, or 22.05kHz.

Signal processing: A certain custom ultrasonic signal can be synthesized and
played by an unmodified sound speaker. Similarly, the received raw signals can
be recorded by a microphone and later processed in software. Hence, the
complete processing loop from transmission to reception can be completed using
software-defined methods only, without the need to modify the hardware. This
advantage of low-level signal processing is not offered by other technologies, say
WiFi for example. Works that use WiFi technology for occupancy sensing, either
rely on high level processing of received signals and have no control over the form
and characteristics of the transmitted signals, or use modified hardware to allow
unsupported signal types and modulations, which limits the methods' reusability
and the seamless integration with existing commercial hardware and devices.

Effects on humans: As we mentioned previously, the human hearing capability
is limited to a maximum of 20kHz, and this limit diminishes with age. Therefore,
even babies or young children will not be disturbed by the ultrasonic signals we
consider, which are limited to the frequency range of 20-22kHz. Up to this date,
and to the best of our knowledge, there is no sufficient evidence to characterize
any negative effects that may result from the exposure to the ultrasonic signals.

6
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Unlike humans, pets are able to hear some frequencies of the ultrasonic range, like
dogs (64Hz-44kHz) and cats (55Hz-77kHz) [5]. However, it is not clear whether
this would have any negative impact on their behaviors, compared to other ambient
sonic noises. In our tests, we do not involve any pets to check this issue, since
our aim is to benefit from the existing hardware to validate and test our methods
and algorithms for 20-22kHz. However, since the same methods can be employed
with higher ultrasonic frequencies, not audible to pets, future improvements in the
manufacturing of hardware components would allow to support these frequencies,
and alleviate this limitation.
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1.5 Occupancy Sensing Approaches

A variety of methods and technologies have been employed to sense the presence
of people in indoor spaces. We can differentiate between two main approaches in
this regard: The first approach assumes or requires the occupants to carry or wear
a device on them, we refer to this approach as device-based. Whereas the second
approach senses the presence of persons without the need for a carried device,
referred to as device-free. We present here the aspects of each of the approaches.

1.5.1 Device-Based Approach

The device-based presence sensing approach leverages the localization of mobile
devices and maps them to their holders, in order to infer the occupancy of indoor
spaces. This field is known as indoor localization, and has been gaining increasing
attention, research, commercial and standardization efforts in the recent years. In
a typical scenario, a central system or server locates the devices in the area of
interest, or each device would infer its own location and communicate it to the
system.

While the technologies for indoor localization span a wide spectrum, the mobile
device to be located depends on the underlying technology. Most of these
technologies target the use of existing devices which users already possess, or can
acquire with a reasonable cost or effort. Typically, such devices are of general
purpose type like a smartphone or a bracelet. Some technologies supported with
general purpose devices include WiFi, Bluetooth, low frequency ultrasound
(20-22kHz). In other cases, a custom device developed specifically to support a
certain localization technology is used, which an average user doesn’t necessarily
have. Examples include an Ultra-Wideband (UWB) enabled device, a device
equipped with an RFID tag, or a device to support high frequency ultrasound
(above 22kHz), etc. This would be usually the case when the underlying
technology is not supported by a generic device.
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By mapping located devices to their holders, one can obtain comprehensive
information about the occupancy state, people count, their movements and
activity (time spent at different locations, paths followed, etc.). This information
may be used later not only to feed occupancy-driven systems and to customize
their services, but also to gain relevant insights about people preferences,
behaviors, and their overall experience.

One advantage of this approach is the high accuracy that could be achieved
through indoor localization techniques, with the most promising of them offering
an accuracy within a few centimeters [6]. Another advantage is the ability to
know the exact occupancy, people count, and possibly people identity which are
inside the areas of interest. Depending on the desired application this approach
can be very useful. Let us consider this example: A large shopping center, an
exhibition, or a museum wants to collect statistics about its customers or visitors,
in order to study their interests, and assess their overall experience. This would
not be possible without obtaining exact occupancy information, not only which
locations were occupied or not at different times, but also how many people
visited a certain spot, what these people were also interested in during their visit,
and how long they stayed overall.

On the other side, the main disadvantage is the need for the occupants to wear or
carry a device that supports the localization system being used, which cannot be
always available or guaranteed. The device to be located needs to be configured to
support the localization system. Moreover, requiring the occupants to carry the
mobile device all the time might become inconvenient in some cases, presenting a
source of discomfort. For example, it might not be convenient to use a device-based
occupancy sensing system in a smart home, as this will require the inhabitants to
carry the mobile device all the time. Furthermore, some systems may lose their
whole purpose if people could just avoid carrying the mobile device, this could be
the case of security systems for example.
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1.5.2 Device-Free Approach

The device-free approach is based on using a sensing module to detect the presence
of people in indoor spaces. The sensor usually detects one or more characteristic
of a human body in order to infer the occupancy. This goes around answering the
question: What characterizes a human body, as compared to other objects (walls,
structures, furniture, etc.)? The sensing technology then relies on the answer to
the question. This can be related to:

• Heat: A human body's temperature can be used to distinguish it from its
surroundings. This heat manifests as emitted infrared radiations [7].

• Motion: A human being can change position or move parts of his body,
unlike static objects (wall, chair, table, etc.) [8].

• Signal reflection: When a person is present in a certain environment, he or
she will alter any mechanical or electromagnetic signals that propagate in
the environment and reach his body, through reflection and scattering [9].

• Breathing: The human body breaths normally with a rate of 12 to 20 breaths
per minute. When he does so, he consumes oxygen (O2) and generates
carbon dioxide (CO2) [10], and his chest moves periodically to allow cycles
of inhaling and exhaling [11].

• Appearance: A person's image and shape can be used to recognize his
presence [12,13].

In addition to the mentioned characteristics, any other feature that physically
identifies a person's presence can be leveraged (like talking, pressure on ground or
chairs, etc.), and used with an appropriate detection technology.

As a comparison to the device-based approach, an advantage of device-free is the
unnecessity for people to have a device on them all the time. This allows more

10



1.5. Occupancy Sensing Approaches

comfort for the users, and offers more flexibility for the potential applications.
Moreover, with this approach the privacy of the occupants is preserved, as their
identity is not linked with the devices (with the exception of technologies that
can still identify people, like video cameras). Additionally, setting up and using
occupancy sensing systems becomes more convenient with this approach, as there
is no need for pre-configured devices to be carried or worn by the target users.

However, the major drawback of the device-free approach, is the limitation of
information about the occupants' behaviors, which can be used for statistical
analysis. This is due to the lack of identification of the occupants.

In general, the choice of the approach is governed by the application of the
occupancy information. When exact data and details about the occupants are
sought, then a device-based approach is necessary. On the contrary, if only
general occupancy information is required, like to know which spaces are
currently occupied by someone and which are vacant, then a device-free approach
is more suitable. In Chapter 2, we elaborate more on the two approaches, by
presenting the different technologies and methods that are used for each of them.
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1.6 Thesis Scope

The scope of this PhD thesis is to come up, study, analyze, develop and
implement novel methods and algorithms for occupancy sensing using
ultrasounds, and to obtain a thorough knowledge of the capabilities and
limitations of this technology.

Occupancy sensing is a broad field that spans different dimensions of resolution,
whether it is spatial, temporal, or information about occupants. In order to define
the exact scope of this thesis, we refer to the occupancy resolution models described
in the literature, which categorize the resolution levels.

In their paper [14], Melfi et al. summarize the different occupancy resolution levels
in the decomposition shown in Figure 1.2. In their model, the authors categorize

Figure 1.2: Occupancy resolution as described in [14]

the occupancy resolution problem using three dimensions:

• The spatial resolution, which includes the building, floor, or room resolution.
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• The occupant resolution, composed of the occupancy (binary case: occupied
or not), count, identity, and activity.

• The temporal resolution, whether it is in days, hours, minutes, or seconds.

Each level of occupancy resolution has its own set of applications, and may
require different methods and techniques. For example, general binary occupancy
detection is different from specific presence identification. The general occupancy
sensing concerns knowing whether the indoor spaces are occupied by some
persons or not, regardless of the identity of these occupants. This type of
information is useful for applications like lighting control, heating and cooling,
emergency response, etc. where only the presence of the occupants, and not their
identity, affects the provided services. Presence identification consists of knowing
who is present in a certain indoor space at a given time. This can be handy in
applications like intrusion identification, or can be used to collect statistics about
the occupants and their activity. With the exception of video cameras,
identifying the presence is mainly possible through device-based methods. The
same concept applies to other dimensions like space and time. For example,
building or floor occupancy may be used for intrusion detection and requires less
infrastructure, whereas room occupancy can be used for lighting or heating
control and requires a different deployment of sensors. Similarly, a resolution of
hours may be used for collecting some statistics about the occupancy, whereas a
resolution of seconds is useful in real-time applications.

The previous model of occupancy resolution was later refined by Palipana et
al. [15] (Figure 1.3). The refined model categorizes the occupancy resolution by
space (building, floor, room, point), occupants (presence, head count, tracks,
activity, identity), and time (offline, hours, minutes, real-time). Given these
models, we define the target scope of this dissertation. Following Melfi et al.'s
model, the scope falls in the occupancy resolution of room (spatial resolution),
binary occupancy (occupant resolution), seconds (temporal resolution). Similarly,
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Figure 1.3: Refined occupancy resolution in [15]

if we follow Palipana et al.'s model, we can define the scope as room resolution
(space resolution), presence (occupants resolution), and real-time (time
resolution).
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1.7 Thesis Contributions

My thesis brings four main contributions:

• I present my design of a device-based occupancy sensing system using
ultrasounds, in which a user's smartphone locates the room it is inside
using ultrasonic packets. We show how we can turn commodity sound
speakers into ultrasonic beacons, and describe our solution for a reduced
complexity packet decoding, using a two-step process comprising a coarse
detection and a fine decoding methods. We prove that, under the discussed
conditions, packet collision cannot be fully eliminated. Rather, we describe
how these collisions can be detected, and reduce their probability by a
careful choice of emission periods. We present our implementation of the
described methods using commodity sound speakers and smartphones. For
this purpose, an Android application was developed to decode the
ultrasonic packets and locate the subject device. In order to assess the
performance of the system, we test it experimentally in an office
environment including two adjacent rooms of different sizes, connected with
a hallway. Under ambient noise conditions, the system achieves a room
localization accuracy of 98%, despite packet collision.

• As for device-free occupancy sensing, I present a self-calibration method for
an ultrasound-based motion detection system, called UltraSense. The
method allows the system to auto-calibrate its parameters using
unsupervised learning techniques, without a prior knowledge of its
installation environment. This avoids the need for manual calibration of
the sensing modules, as it is the case with conventional sensors in use. I
implement a prototype of the proposed system using a Raspberry Pi
board1 and commodity speaker and microphone. The system is proved to
achieve a high accuracy in different scenarios, including non line-of-sight

1Raspberry Pi 3 Model B: https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
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conditions, a challenge that current occupancy sensors fail to overcome. We
have tested the system in rooms with different sizes, and with varying
conditions (LOS and NLOS), and the results show an accuracy between 87
and 98%, with a false positive rate between 0.7 and 1.3%.

• To solve the problem of higher power consumption associated with
ultrasonic motion sensors, as compared to passive ones like infared, I
introduce an automatic power switching method, which I call power
hopping. The method's objective is to optimize the transmit power level,
by calculating automatically the optimal value for a given environment. I
also design an algorithm to automatically detect any changes in the
environment layout. The proposed method and algorithms are
implemented, tested, and the results validate the assumption of the
possibility to reduce the energy consumption, which reaches up to 78% in
our tests.

• I propose a method for sensing the presence of still persons with ultrasounds.
We start by discussing how the presence of persons affect the propagation of
ultrasonic signals through reflection and scattering, and that by observing
the reflection patterns of the signals one can theoretically infer the occupancy
state. We explain the limitation of masked presence especially in poor SNR
(signal-to-noise ratio) conditions. To solve this challenge, I propose the use of
segmented reflection patterns, and show that the application of supervised
learning over features extracted from these patterns can result in a very
high accuracy, even in low SNR conditions. We evaluate the performance
of the system in office and residential environments, under LOS and NLOS
conditions, and with different positions and postures of the occupants. With
the best tested classifier (SVM), we were able to achieve an accuracy of
86-98%.

By addressing the use of commodity hardware to prove the designed methods,
I aim to offer a solution that can work across different existing and potential
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commercial devices, which will open the door for new applications of smart homes,
systems, and devices.
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1.8 New Potential Applications

We envision that our presented algorithms and solutions can be used in various
domains. Here are some possible applications that can be enabled through our
work:

• A shopping center, a hospital, an airport, or a museum that uses installed
loudspeakers for broadcasting announcements, or playing music, can turn
them directly into ultrasonic transmitters that can be used for localization
of occupants, using our proposed system (Figure 1.4). The transmission of
ultrasonic signals can co-operate seamlessly with traditional
loudspeakers'functions. With their consent, the occupants use an
application on their smartphones for localization, and share their indoor
location with the management system to customize a certain set of services.
An example of these services would be to redirect the occupants to exit
doors in a balanced way in case of an emergency, achieving an efficient and
safe evacuation (Figure 1.5).

• With its speaker and microphone, a PC can use our ultrasonic motion
detection method to detect when the user walks away (Figure 1.6). In this
case, the PC may go to lock mode in order to avoid unwanted access from
other persons.

• A TV screen can similarly detects when the user walks in (Figure 1.7). In his
home, the TV can play an excerpt of the users' preferred news or programs
when he returns home, or pause on a movie when he moves out of the room.
In a hotel room, it can be used to play a welcome message for the guests
and show them a video of the top attractions in the region. In a museum or
exhibition, it can display information for people when they enter a room or
a section.
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Figure 1.4: Ceiling and wall-mounted loudspeakers already installed in buildings like
shopping malls and airports, can be used as ultrasonic transmitters for occupancy sensing.

Source: https://www.prosoundweb.com/images/uploads/LargeEVNewAirport.jpg -
https://www.lintone.co.uk/media/wysiwyg/CEILING_SPEAKERS_2_.JPG -

https://meyersound.com/wp-content/uploads/2014/05/mall_feature1.jpg -
https://www.prosoundweb.com/wp-content/uploads/2015/09/20150929harman.jpg -

https://www.renkus-heinz.com/upload/dsc_0925-2-thumbnail.jpg
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Figure 1.5: In case of an emergency evacuation of a crowded place, the management system
should be able to quickly estimate the occupancy of different spaces, in order to guide people

to safe exit doors in a balanced and efficient way

Source: https://static1.st8fm.com/en_US/content_pages/1/pages/simple-insights/img/
80-for-black-friday-shopping-list-wide.jpg

Figure 1.6: A PC can use ultrasonic signals to detect that his user is walking away, in order to
switch to lock mode

Source:
https://s3.envato.com/files/aae12db7-a45f-4397-b693-d35057a4ae5b/inline_image_preview.jpg
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Figure 1.7: Smart TVs in homes, hotels, or museums can use ultrasonic signals to sense the
occupancy of their environments, and customize their displays accordingly

Source: https://ntmresizer.azureedge.net/sized/780/437/www.cfmedia.vfmleonardo.com/imageRepo/4/
0/64/854/122/43422x_P.jpg - https://www-static.operacdn.com/static-heap/67/

67ee871aaed2eaddcb62b91e7d6f0aa210717989/opera-tv-livingroom.jpg -
https://t-ec.bstatic.com/images/hotel/max1024x768/134/134728303.jpg -

https://static1.squarespace.com/static/574ef83b4d088e84c523b0e8/57505dd39f726601674e874f/
57505dd4555986cfe502ba74/1465494032646/empathics_2.jpg?format=1500w
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Figure 1.8: A smartphone can use ultrasounds to sense if the user is in the vicinity or not, and
adjust the ringing volume accordingly

Source:
https://austinlchurch.com/wp-content/uploads/2016/02/sell-what-people-are-buying-1024x683.jpg

• A smartphone can use its built-in speakers and microphones to sense motions
in its vicinity and infer if the user is nearby (Figure 1.8). The smartphone
can therefore adjust the ringing volume according to the scenario: the phone
will ring with a low volume when the user is detected in the vicinity, and
when the user is not detected to be around, the phone can either ring with
a high volume or reply with a custom automated message.

• In the same way, a smart speaker assistant can sense motions around to
help the virtual assistant customize the delivered services, or improve the
communication with the user (Figure 1.9).
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Figure 1.9: Our proposed methods can enhance the capabilities of smart speaker assistants,
and their response to the user

Source: https://techcrunch.com/wp-content/uploads/2017/10/voice-assistants.png?w=1390&crop=1

1.9 Thesis Frame

The work presented by this dissertation was mainly completed in the frame
of the European project SmartHeat2. The project is part of the Active Assisted
Living (AAL) Programme, and consists of developing an intelligent heating
management system, especially targeting the elderly population. The aim of my
work is to provide a robust and reliable solution for presence sensing inside
residential buildings. The occupancy information obtained by my solution is fed
to the smart system, so that it can learn the users' habits and behaviors.
Accordingly, the system can improve the heating conditions of inhabitants and
reduce energy costs.

Here follow the main desired characteristics that our work aims to fulfill in
the frame of the project. These characteristics emerged from the requirements
set by the needs of the project's end-users. Nevertheless, the generic nature of
these requirements allows the re-usability in other types of applications as well. In
addition to the basic requirements, like the reliability, robustness, and accuracy,
here are the main targeted ones:

2AAL SmartHeat Project: http://www.smartheat-aal.eu/
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• Non-intrusiveness: It is desired for the solution to ensure user's comfort, and
be non-invasive for his privacy.

• Non line-of-sight operation: The sensing solution should be able to operate
in both LOS and non-LOS conditions, allowing for continuous sensing if the
system is obstructed by objects or furniture. This is also useful since elderly
people might be reluctant to accept visible sensing modules.

• Convenience of use: The solution should be convenient to use, seamless, and
not requiring heavy infrastructure or equipment to be deployed. Moreover,
it desired to be easily scalable.

• Room-level operation: The presence sensing solution is required to have
a room granularity, and hence our work focuses on room-level occupancy
detection. We define a room as a space enclosed within four walls, with
possible entry through a door that connects it to a hallway or another room.
The typical size of a room we consider is in the order of few to tens squared
meters, nonetheless the coverage of the sensing system can be enhanced, if
need be, with a higher transmitted signal power using suitable hardware
components.

SmartHeat project was run through a consortium of 8 European partners,
some of which are focusing on technical aspects, and others focusing on end-users.
The technical aspects include the core system that learns the habits of the users and
controls the heating through smart valves, the design of the smart valves, and the
occupancy sensing solution. The end-users partners focus on all other aspects, like
getting the requirements desired by the end-users, assessing the acceptability of the
used technologies, the evaluation of the developed systems, addressing the security
and privacy concerns, and checking the compliance with European regulations and
standards.

Within the frame of the thesis, the proposed methods and techniques were
implemented and evaluated using functional prototypes. We have built these
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prototypes by integrating mainly COTS components and some custom-made
modules using our expertise, and with the help of our technical partners, namely
the Spanish-based SME ModoSmart, and the Italian-based company Sensor ID.
The developed prototypes were tested and characterized in realistic environments
(details follow in the corresponding experimental evaluations). The next step is
for our industrial partners to miniaturize the prototype in a small-size sensing
module, implement the communication protocol through Bluetooth or Zigbee,
and integrate it into the complete SmartHeat system. The leading of the
commercialization, ModoSmart, will have up to 2 years as a time-to-market after
the project's end, in order to have the system ready for the market, according to
the AAL committee's instructions.

As we mentioned previously, some pets may be able to hear ultrasonic waves.
However, studying the effect of the used ultrasounds on pets was beyond the scope
of the thesis. Nonetheless, our developed methods and algorithms make it possible
to use low-power signals, which will reduce the chance of them being a source of
annoyance for pets.

While the main application that drove our work was related to energy
efficiency in terms of improving the comfort and reducing heating costs, our
developed solutions and algorithms are valid to be used in other applications
that are based on occupancy information. Nonetheless, the choice of the specific
parameters might need to be customized to better suit the target application.
Some of these parameters include the signal frequency selection, sampling rates,
transmitted signals characteristics, frames duration, frames acquisition rate,
training set size, classification models, etc. The choice of the parameters is
mostly subject to trade-offs and can have an impact on the detection accuracy,
false positives rate, immunity to noise and interference, processing time, power
consumption, training time, etc.
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1.10 Thesis Structure

The rest of this thesis is organized as follows. In Chapter 2, we review the
general state-of-the-art in occupancy sensing, in addition to the related works in
the literature. We detail the technologies that have been employed in device-based
and device-free occupancy sensing, and discuss the pros and cons of each of them.
We also review the scientific works that address the problem, and present the
contributions they bring, their aspects, and their limitations if any.

In Chapter 3, we present our solution for a robust device-based occupancy
sensing system, which localizes smartphones on a room-level scale using
ultrasounds. We describe the design aspects, the decoding algorithm, collision
detection and avoidance. Then we show the implementation and the
experimental evaluation of the system, and discusses the obtained results. This
chapter revises a previous publication [16]: Abbass Hammoud, Michel Deriaz,
and Dimitri Konstantas. Ultrasound-based Room-level Localization
System Using COTS Components. UPINLBS 2016.

Starting with Chapter 4, we address device-free occupancy sensing. In this chapter,
we present the self-calibration method for an ultrasound-based motion detection
system, called UltraSense. We implement the proposed method on a prototype
using commodity hardware, and show the results from the experimental evaluation.
The chapter revises a previous publication [17]: Abbass Hammoud, Michel Deriaz,
and Dimitri Konstantas. UltraSense: A Self-Calibrating Ultrasound-Based
Room Occupancy Sensing System. ANT 2017.

In Chapter 5, we present the power hopping method. We describe the theory
behind the algorithm, and its time complexity. Then we show the method which
automatically detect changes in the environment, and finish by testing the
proposed methods. This chapter revises two previous publications [18]: Abbass
Hammoud, Grigorios Anagnostopoulos, Athanasios Kyritsis, Michel Deriaz, and
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Dimitri Konstantas. Power Hopping: An Automatic Power Optimization
Method For Ultrasonic Motion Sensors. UIC 2017. And [19]: Abbass
Hammoud, Michel Deriaz, and Dimitri Konstantas. Adaptive Power
Switching Technique For Ultrasonic Motion Sensors. Journal of Ambient
Intelligence and Humanized Computing 2018.

We dedicate Chapter 6 to address the sensing of still persons with ultrasounds. We
show how such people can be masked by the other structures escpecially in poor
SNR conditions, and discuss our method to overcome this challenge. The method
and algorithms are also implemented, tested, and analyzed. The chapter revises a
previous publication [20]: Abbass Hammoud, Athanasios Kyritsis, Michel Deriaz,
and Dimitri Konstantas. Enhanced Still Presence Sensing with Supervised
Learning over Segmented Ultrasonic Reflections. IPIN 2017.

Lastly, Chapter 7 summarizes all the conclusions drawn from designing the
methods and algorithms, developing and implementing the described systems,
testing and assessing their performance. We also discuss the new insights that
our contributions bring to the field of occupancy sensing.
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2 State-Of-The-Art Overview

With the importance of occupancy information and its implication in various
applications, the problem of occupancy sensing has attracted efforts from the
scientific community, as well as commercial-oriented engineering solutions. This
chapter gives an overview on the technologies, methods, and works that address
the occupancy sensing up to this date, before proceeding to present our own
work. While the presented literature review focuses on the scope defined in the
introduction chapter (Section 1.6), it is worth to mention that some of the
mentioned technologies, methods, and works, may be valid for different
resolution levels.

2.1 Device-Based Technologies

As mentioned earlier, the device-based occupancy sensing approach relies on
determining the presence of a device, which is held or worn by the occupant.
This field of indoor localization has been triggered in the recent years, with the
increasing popularity of mobile devices. The located mobile device may be a
smartphone, a bracelet, or a custom-made tag. Outdoor localization is mainly
governed by the use of GNSS systems (like GPS [21], Glonass [22], etc.).
However, this technology cannot be used indoors as the signals are obstructed.
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Therefore, several technologies and methods have been suggested and
investigated for indoor localization [23–25]. We present in the following
subsections, the most relevant technologies for occupancy detection.

2.1.1 WiFi

WiFi access points can be used to locate compatible devices and estimate the
occupancy. By mapping the mobile device to one or more closest access points,
an estimate of his location can be obtained. The accuracy of the location depends
on the distribution of the access points and the localization technique in use, and
is typically in the range of few meters error [26]. One technique is to use the
high-level WiFi data, and observe the MAC and IP addresses of the WiFi packets
exchanged between the mobile device and the access point, to infer the zone in
which the located device is inside. For instance, [27] and [14] use this technique
for occupancy estimation.

Another technique is to examine the Received Signal Strength Indicator (RSSI)
of WiFi signals, and then use methods like trilateration combined with a chosen
propagation model, in order to locate the device. However in indoor environments,
the propagation of RF signals like WiFi can exhibit some randomness due to the
complex structures and their multipath effects. Hence, the location estimate might
deviate from the actual location when using models like the Log-distance pathloss,
and one should opt out for a more representative and suitable propagation model.

Fingerprinting can also be used [28]. It relies on a training phase where RSSI
measurements are collected and mapped to the corresponding locations. On the
real time phase, the received RSSI of WiFi signals are compared against the RSSI
maps in order to infer the device's current location. In [29] for example, WiFi
fingerprinting is used for lighting control. One drawback of this method is the need
for a manual training phase for each new environment, which makes it tedious and
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time consuming for large scale deployments. Moreover, several locations might
have similar fingerprints, leading to errors in the location estimation [30].

Overall, the advantage of using WiFi for occupancy sensing is that the majority
of commercial and residential buildings are already equipped with WiFi access
points, which can be leveraged directly without the need for additional hardware
deployment. On the other side, the coverage and distribution of WiFi access
points may not be optimized to fit the purpose of occupancy detection, affecting
the accuracy of the location estimates.

2.1.2 Bluetooth

Bluetooth technology can also be employed in occupancy sensing. In this case,
Bluetooth-compatible devices like smartphones and bracelets scan for Bluetooth
packets, which are periodically emitted by the Bluetooth beacons [31]. Typical
beacons use Bluetooth low energy (BLE), and operate for several months or few
years on a single battery. Figure 2.1 shows some commercial models of Bluetooth
beacons.

Similar to WiFi, the RSSI or fingerprinting techniques can be used.
Athanasios et al. [33] propose an algorithm combining RSSI measurements with
the room geometry information, to achieve room-level occupancy sensing. An
RSSI-based algorithm is similarly proposed in [34] and [35]. Whereas in [36], a
fingerprinting technique is presented with the use of supervised learning over the
collected data. In general, Bluetooth can be similar to WiFi in the pros and cons,
except that the deployment of Bluetooth beacons, which is more dense than
WiFi access points, allows a better achieved accuracy, typically of 1-2m [26].
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Figure 2.1: Different models of Bluetooth beacons (adopted from [32])

Source: http://www.seillc.com/images/blog-beacons.gif

2.1.3 UWB

Ultra-Wideband (UWB) technology uses high-bandwidth radio signals which offer
a better accuracy for range estimation. UWB has been used by [37] to determine
the occupancy and manage the energy consumption. While this technology offers
a better accuracy compared to other RF-based ones (like WiFi and Bluetooth), its
use is mainly restricted by the need for special equipment and receivers, limiting
its wide-scale adoption.

2.1.4 RFID

An RFID (Radio Frequency IDentification) system consists of a reader that
identifies nearby tags, which can be passive or active transceivers (Figure 2.2).
The range is typically 1 to 2 meters for battery-less passive tags, and can reach
up to 30 meters with active battery-powered tags [38]. Li et al. [39] use RFID
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tags to estimate the occupancy and control HVAC operations. Their results
report a higher accuracy for stationary occupants (88%) than mobile ones (62%).
In [40], RFID data is fused with PIR sensors to improve the accuracy, in the
application of lighting control. [41] uses active RFID tags to determine the
room-level occupancy and adjusts heating efficiently. In general, the accuracy
achieved with RFID technology is satisfactory for occupancy detection, however
the need for special deployment and the necessity to equip all occupants with the
special tags, are the main drawbacks.

Figure 2.2: RFID tags and reader (adopted from [42])

2.1.5 Ultrasound

While the previous technologies are based on RF signals which are
electromagnetic waves, ultrasounds are mechanical waves by nature. The use of
ultrasounds offers some interesting advantages over the other technologies as
described earlier. For instance, ultrasounds are inherently limited by walls and
structures allowing to achieve the required room-level occupancy detection.
Additionally, the support of commercial hardware avoids the need for a dedicated
infrastructure to be deployed. Since Chapter 3 is dedicated for device-based
occupancy detection with ultrasounds, we keep the discussion of the related
works to the corresponding section in the chapter.
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2.2 Device-Free Technologies

When device-based occupancy detection solutions become inconvenient or
uncomfortable for the occupants, the device-free approach aims to find the
alternative. As described earlier, this approach relies on sensing modules placed
in the indoor areas, which sense the presence of persons without their explicit
participation or interaction. So what are the relevant technologies and methods
that are found in the literature?

2.2.1 PIR

A passive infrared (PIR) sensor detects the infrared radiations from the
surrounding objects (Figure 2.3). By responding to the change in temperature
pattern across the field of view, a PIR sensor can sense persons' motions and
infer the occupancy [43]. This sensor is considered passive as it does not emit
any energy itself, but rather relies on the pattern of the received infrared
radiation in the environment [44].

In [45], PIR sensors are used to achieve 10 to 15% in energy saving. Dodier et
al. [46] enhance the occupancy accuracy using a Bayesian network with PIR
sensors' data, and similar works use a Naive Bayes algorithm [47] and a Kalman
Filter [48]. In [49], a network of PIR sensors is used to count visitors in a given
building. Raykov et al. [50] use a hidden Markov model with a single sensor to
estimate the occupancy count in a room. And instead of using PIR to obtain
binary motion information, Narayana et al. [51] propose to process analog signals
from the sensors to get a more fine information about the moving object, its
speed, range, etc.

PIR sensors have been widely used commercially for various applications. They
are generally attractive due to their low cost and power consumption. However,
the main drawbacks of PIR sensors are their limitation to work only in

34



2.2. Device-Free Technologies

Figure 2.3: PIR sensors

Source: https://i.ytimg.com/vi/DJ2JjirBw1o/maxresdefault.jpg

line-of-sight (LOS) conditions, as well as their sensitivity to changes in the
environment (sunlight, heating effect, etc.), which imposes some constraints on
installation, and usually require on-site calibration (Figure 2.4). Moreover, the

Figure 2.4: PIR sensors usually require manual calibration

Source: https://cdn-learn.adafruit.com/assets/assets/000/013/839/medium800/proximity_189bottom_
LRG.jpg?1390948358
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sensitivity decreases sharply as the range increases leaving some dead points
(Figure 2.5), and a dense deployment [52] may be needed to overcome this
limitation, like placing four sensors per room as suggested.

Figure 2.5: PIR detection zones leave some dead points as the range increases

Source:
https://www.researchgate.net/profile/Syeda_Puspita_Mouri/publication/303314563/figure/fig4/AS:

363150974177281@1463593347035/Working-principle-of-PIR.png

2.2.2 RF-based technologies

RF signals can be leveraged to detect human motions or the presence of persons in
a certain area, without requiring the occupants to wear a device. Doppler-based
micro radars represent one means to sense persons' motions. An example is the
X-band motion sensor (Figure 2.6). The frequency range of X-band is specified
by IEEE at 8 to 12GHz. UWB can also be used. [53] combines the use of a UWB
radar with a power monitoring software to increase the robustness of occupancy
detection.

Some works propose the use of modified WiFi access points. Depatla et al. [54]
are able to estimate the occupancy count between a WiFi transmitter and a
receiver, placed opposite to each other. They report a high accuracy (88%) with
directional antennas (modified hardware), and a lower one (63%) with
omnidirectional antennas (unmodified routers), in an indoor environment. Also
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Figure 2.6: An X-band motion sensor

Source: https:
//www.parallax.com/sites/default/files/styles/full-size-product/public/32213_0.png?itok=Ar_9M9SJ

in their work, Adib et al. [55] use WiFi signals to track persons behind a wall
and locate their positions using a MIMO antenna array.

However, one disadvantage of using RF signals for occupancy, is the fact that as
electromagnetic waves, they propagate through walls and doors, and hence they
are not suitable for determining the occupancy at the room-level. Since in this
case, persons in adjacent rooms will alter the propagated RF signals, and lead to
errors in the occupancy state results in the subject room. Accordingly, if we were
to consider a scenario where the system in [55] is being used, then to detect the
occupancy state in a room X, a sensing unit (modified WiFi router in this case)
is to be placed in an adjacent room Y pointing towards the room of interest (X).
A similar unit would need to be placed in room X (or adjacent) to detect the
occupancy state of room Y for example, and so on.
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2.2.3 Computer vision

Computer vision is traditionally used to allow devices and computers to see and
analyze their environment, as humans naturally do. By installing cameras in
indoor spaces and processing the acquired frames, the presence of occupants can
be detected. Example works that use computer vision for occupancy is [56] where
a network of cameras is used along with PIR sensors to sense occupants' presence,
and similarly [57] uses cameras with PIR and other environmental sensors. [58]
determines the presence of persons by detecting human heads, using a three-level
classification algorithm.

Computer vision can offer a very high accuracy of occupancy sensing, especially
with advanced classification algorithms. Additionally, it is possible to determine
the activities of the occupants, which can be useful to customize services. On
the other hand, image processing algorithms require a high computational load.
Moreover, people are generally sensitive about being continuously filmed, and
reluctant to accept to be monitored with cameras, which they consider intrusive
to their sense of privacy [59].

2.2.4 Power meters

By monitoring the power consumption of different electric appliances, it is
possible to obtain occupancy information. Algorithms that describe the use of
smart electricity meters in occupancy information can be found in [60–63]. This
technology is usually more useful for post-processing analysis rather than real
time occupancy sensing, since it relies on processing of data recorded over a
certain period of time, or training a model during an initial phase. Moreover, a
dense deployment is generally required to obtain accurate room-level occupancy
information.

38



2.3. Summary

2.2.5 CO2 Sensors

When a person is present in an indoor environment, the CO2 level increases due to
his breath. A CO2 sensor detects this change to identify if a person is present. For
isntance, [64] and [65] leverage CO2 sensors to infer the occupancy, reporting an
accuracy of 96% and 94% respectively. The main limitation of this type of sensors
is the time delay: When a person enters a room, the change in CO2 level will
only be detectable after a certain time duration. The same applies when a person
leaves the area, where the CO2 level will start to drop gradually. This is why
CO2 sensors are usually not used alone, but rather combined with other sensors
to guarantee the robustness. For example to enhance the occupancy detection
accuracy, [66] uses the combination of temperature, humidity, CO2 concentration,
and PIR sensors, where the collected data is fused using a radial basis function
network. A similar approach can also be found in [67].

2.2.6 Ultrasound

When it comes to ultrasound, there are different types of methods and sensors
used for device-free occupancy sensing. Compared to other technologies, and
especially to the widely used PIR, one important advantage of ultrasounds is the
ability to operate in NLOS conditions, in addition to other ones like the higher
sensitivity, the support of commercial hardware, etc. Occupancy detection
techniques using ultrasounds include the use of ranging techniques, motion
detection, and still presence sensing. We elaborate more on these and we
compare them to our work later in this thesis, namely in Chapters 4 and 6.

2.3 Summary

After discussing the different techniques involved in occupancy sensing, we provide
an overview comparison of the presented technologies for the two approaches, with
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Table 2.1: Summary of state-of-the-art technologies in occupancy sensing

Technology Advantages Limitations

Device-Based
Approach

WiFi
Widely Available - Use

of existing infrastructure

Limited localization accuracy
using RSSI - Not tailored for
room level - Fingerprinting

requires manual training phase

Bluetooth Easily deployed

Need a high density of
beacons for a high accuracy -

Fingerprinting requires manual
training phase

UWB
High localization

accuracy
Need for specialized

equipment and receivers

RFID
Satisfactory accuracy for

occupancy sensing
Need for specialized
equipment and tags

Device-Free
Approach

PIR motion
sensors

Widely Available - Low
cost - Low power

Sensitive to heat and
sunlight - Manual calibration -

reduced accuracy with
distance

RF-based
technologies

High accuracy of
motion detection

Not tailored for
room-level

Computer vision
High accuracy -

occupancy count
Privacy concerns

Power meters Simple to place and use
Dense deployment for

high accuracy

CO2 sensors Simple and convenient
Limited accuracy - usually
complemented with other

technologies

the main pros and cons of each of them. We keep the discussion of advantages
and limitations of ultrasounds to the subsequent chapters.
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3 Ultrasound-Based Room-Level
Localization Using Smartphones

3.1 Chapter Abstract 1

In this chapter, we follow a device-based approach, and present a room-level
localization system based on ultrasounds. Our aim is to offer a robust and
accurate localization system for room-occupancy detection, using the least
possible hardware deployment. The purpose is to guarantee the ease of
deployment and scalability in different potential environments. In our system,
smartphones locate in which room they are using commodity sound speakers as
ultrasonic beacons. It was designed to be robust to noise, scalable, to have a low
complexity on the receiver, and not requiring synchronization between the
transmitters and receivers. We avoid the use of RF signals, and rely solely on
ultrasounds. Additionally, we discuss the design of the ultrasonic packets, in a
way that ensures the support of typical hardware and devices commercially
available. Since distinct transmitters work independently, signal interference is a
potential problem to be solved as it leads to packets collision. Therefore, we
address the collision detection problem and present our solution for collision

1A shorter version of this chapter was published in: A. Hammoud, M. Deriaz and D. Konstantas,
"Robust ultrasound-based room-level localization system using COTS components," 2016 Fourth
International Conference on Ubiquitous Positioning, Indoor Navigation and Location Based Services
(UPINLBS), Shanghai, 2016, pp. 11-19.
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avoidance. In addition, we describe how our proposed system satisfies crucial
characteristics that are desired for an indoor localization system, namely the
accuracy, robustness, availability, scalability and ease of deployment. As for the
system implementation, we show how the system can be assembled using
different commercial off-the-shelf components. Our experimental evaluation of
the system in realistic conditions shows that it is able to achieve a high accuracy
(>98%) of room localization, despite ambient noise and packet collision.

3.2 Introduction and Related Work

Several technologies have been investigated, and many methods were developed
for indoor localization. However, there is currently no standard for an indoor
localization system, like it is the case for GPS outdoors. Some of the main
reasons are the insufficient availability, and the need for extensive node
deployment and maintenance, which prevent the widescale adoption of most
systems' implementations [38]. Thus, a robust, reliable, and widely available
indoor localization system would pave the way for a wide range of applications.

In the previous chapter, we presented the works that address device-based
occupancy sensing. Here, we focus on the use of ultrasound technology. As we
mentioned earlier, ultrasounds present some advantages that make them
interesting to use, compared to other technologies. There are several ways for the
employment of ultrasounds in the indoor localization of devices. One of them is
using the time-of-flight (ToF) of the ultrasonic signals. With this technique, the
transmitter should be synchronized with the receiver, for example through an RF
technology. The time it takes for the signal to travel from the first to the latter is
measured, and translated to a distance value. By measuring the distance to three
or more transmitters, one can obtain an estimate of the receiver's position
(device to be located) [68, 69]. Another technique is the TDOA, where three or
more synchronized receivers send signals that are picked up by the receiver, who
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infers its position using hyperbolic geometry methods [70–74]. ToF and TDOA
techniques are used for 3-D localization, and typically require extensive hardware
deployment.

While 3-D accuracy level might not be necessary for occupancy information, less
hardware can be used and deployed to obtain room-level accuracy. Our proposed
system consists of one transmitter per room, periodically emitting a unique
ultrasonic packet, where the user's smartphone decodes the received packets to
locate itself at a given time instant. Since our system uses commercial
off-the-shelf (COTS) components, it does not require special hardware or dense
infrastructure to be deployed.

There are also several studies that explore the use of sound signals for
localization, as we do in our work. SoundLoc [75] uses sound signals to infer
unique impulse responses for different rooms, where the located device comprises
both the transmitter and receiver. The mentioned system achieves a high
accuracy for the tested set of rooms. The authors do not mention whether
ultrasound is used, which suggests that audible sounds were employed. In this
case, special attention should be given as to ensure that the chosen signals are
not disturbing for the users or for people who are present around. Moreover, a
limitation of this system is that it requires a training phase, which might become
a burden for scalability. A similar work [76] uses ambient sound fingerprinting
combined with WiFi to obtain a room-level localization. Shahid et al. [77]
propose a system with dedicated ultrasound beacons operating at a frequency of
40kHz for room-level localization. A special ultrasonic receiver is worn by the
user to support the ultrasound frequency used. This receiver decodes the
ultrasonic signal to identify the corresponding beacon, and the authors state that
the system achieves a good accuracy. However, the main limitation of their
system is the fact that it requires special ultrasonic hardware for both
transmitters and receivers, which limits the possibility for a widespread adoption.
A similar work [78] uses an ultrasound array combined with RFID technology, it
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also requires special receivers for the ultrasonic signals. [79] locates smartphones
using ultrasonic transmitters operating at 41kHz. As a smartphone doesn’t
inherently support this frequency, it is equipped with an external hardware to
sample the received signals. However, although a good localization accuracy is
reported by the proposed system, it’s clear that the solution is not easily
scalable, since all smartphones to be located need to be augmented by additional
hardware components. Borriello et al. [80] used a combination of ultrasound and
WiFi packets, generated by PCs to achieve room level accuracy. Nonetheless, the
system requires having PCs in all the rooms, which may not be available on all
environments.

3.3 Our Contribution

Our work presents a localization system in which smartphones locate the rooms
they are inside using ultrasonic beacons. In differentiation to the previously
mentioned works, it offers the following contributions:

1. Our proposed system uses ultrasound signals solely, without any RF signals.
This ensures the localization method will only need a microphone available
on the located device, and that it would still work even if other technologies
like WiFi or Bluetooth are not available or disabled on the device.

2. Our system uses commercial off-the-shelf (COTS) components.
Commercial sound speakers are used as transmitters, and any device with a
typical microphone can be used as a receiver. Therefore, no expensive or
heavy deployment of infrastructure is needed. The design of ultrasonic
signals and the detection techniques we use allow the hardware to be used
seamlessly, so that it can still be used for other applications simultaneously
(a loudspeaker to broadcast messages, play music, or a smartphone to make
a call).
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3. We make sure that the different transmitters operate independently and do
not require synchronization between themselves or with the receiver device.
This is why signal interference leading to packet collisions is a potential
problem. To solve this problem, we propose a method for collision detection
and avoidance.

4. We derive a formula for the probability of collision under the implemented
mechanism, as a function of the emission periods of transmitters.

5. We introduce the confidence score, as a measure of the reliability of the
localization result. An application which uses the localization system, may
benefit from this value as an indicator of the accuracy.

6. The system is robust to ambient noise and signal interference. It proves a
high accuracy when experimentally tested in realistic conditions in order to
characterize its performance.

The rest of this chapter is organized as follows. In Section 3.4, we mention the
desired features we target for our device-based localization system. Then,
Section 3.5 details the design aspects of our system, and Section 3.6 presents the
packet collision detection and avoidance methods. The experimental setup and
the testing results are shown in Section 3.7, and Section 3.8 shows how the
system's characteristic features address the target ones. Finally, Section 3.9
concludes and summarizes this chapter.

3.4 Desired Characteristics

Before starting to discuss the design aspects of our system, we mention the most
important characteristics that we target in our design of the localization system.
Lacking some of these characteristics will represent a burden on the widescale
adoption of the localization system. We summarize these characteristics in the
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following points. Later in this chapter, we show how our proposed localization
system addresses each one of these points:

1. Accuracy: The indoor localization system is desired to be accurate, as to
locate users reliably, in order to guarantee correct occupancy information.

2. Robustness: Operation under different conditions, and resistance to changes
in the environment (ambient noise, change in structure/layout, etc.).

3. Availability: The technology used should be available to the public, and the
equipment is preferred to be of low cost, without the need for expensive
specialized hardware. Supported devices to be located should be accessible
to the users.

4. Scalability: It is necessary to have a localization system that can be extended
to new environments and still benefit from the same devices.

5. Ease of deployment: A system which is easy to deploy and maintain is
favored over one that requires installing heavy infrastructure, and extensive
node deployment.

3.5 System Design

3.5.1 Architecture

Our localization system is composed of one transmitter per room, and the
receiver is the device that locates itself. We select the transmitter to be a
commercial sound speaker. However, custom made ultrasound beacons can also
be used instead. Each room needs to have one transmitter, which periodically
emits an ultrasonic signal. The emitted signal contains information that
associates it to the corresponding room. On the other side, the receiver is a
mobile device that captures the ultrasonic signals and identifies the current room.
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The receiver needs to have a microphone, it can be a smartphone, a tablet, a
smartwatch, or even a robot equipped with a microphone.

Filonenko et al. [81] demonstrated the ability of mobile phones to support
ultrasound at the frequency range of 20-22kHz. In our work, we have run
additional tests to prove that it is also the case for other devices including
commercial loudspeakers and microphones, in addition to mobile phones. The
devices that we tested are the following: Samsung Galaxy S4 and S5, HTC One
M7, Nexus 5X, Logitech and Creative loudspeakers, Logitech and Blue
microphones. Although we have tested a limited number of devices, other ones
should also enjoy the same capabilities, given that they use a sampling rate of
44.1kHz or above.

3.5.2 Ultrasound Signal Design

The design of the transmitted ultrasonic signal used for localization is critical. It
should be supported by commercial sound speakers and microphones, and also
be non-audible at the same time. Moreover, the signal should be detected and
decoded robustly in noisy environments, and has to accommodate for multiple
rooms. The previous requirements translate into the following points:

1. The signal frequency bandwidth should be picked from the frequency band
20-22kHz.

2. The signal form should ensure a good autocorrelation.

3. The signal modulation is to be carefully chosen so that it accommodates for
any number of rooms.

Taking these constraints into consideration, we decided to use chirp signals, and
design the ultrasound signal as a packet containing two parts, as shown in
Figure 3.1: the first part is the pilot signal, common to all rooms, and the second
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part is the identifier represented by a binary sequence. Having the transmitted
signal composed of two parts, instead of one, reduces the computational
complexity at the receiver side, and makes the decoding process simpler, as will
be discussed later in Section 3.8.

Figure 3.1: Design of the transmitted ultrasound packet

3.5.2.1 The Pilot Signal

The pilot signal is composed of one chirp pulse. Peng et al. [82] proposed the use
of the linear chirp signal in ultrasound systems, as it has a good autocorrelation
function. A linear chirp is a signal whose frequency increases linearly with time.
During experimental tests, when the amplitude of the chirp signal was not properly
scaled, we noticed that the sound speaker generates an unpleasant tick sound, due
to the abrupt change in the amplitude of the audio signal. Therefore, to guarantee
a smooth performance, we decided to scale the chirp pulse by a triangular function,
so that its amplitude increases gradually at its start, and decreases similarly at its
end. The continuous time domain representation of the chirp scaled by a triangular
function is given by the following formula:

x(t ) =


2t

Tchi r p
sin(2π f0t + q

2 t 2) for 0 ≤ t ≤ Tchi r p

2

(2− 2t
Tchi r p

)sin(2π f0t + q
2 t 2) for Tchi r p

2 < t ≤ Tchi r p

where Tchi r p is the chirp duration, f0 and f1 are the lower and upper frequency
limits of the chirp respectively, and q = ( f1− f0)/2.
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In our system, we manipulate and process the ultrasonic signal in discrete-time
domain. The discrete-time representation of the chirp then becomes:

x[n] =


2n
N sin(2π( f0

fs
)n + q

2 ( n
fs

)2) for 0 ≤ n ≤ bN
2 c

(2− 2n
N )sin(2π( f0

fs
)n + q

2 ( n
fs

)2) for bN
2 c < n ≤ N

where fs is the sampling frequency, and N = fs ×Tchi r p .

As a design choice, we select the lower and upper frequency limit of the chirp to
be 20kHz and 20.5kHz respectively. The length of the chirp pulse is an important
factor for accurate detection. The pulse needs to be long enough to be resistant
to noise, and short enough to reduce computational complexity and power
consumption on the receiver side. As a trade-off, we empirically chose the pulse
duration to be 10ms. Figure 3.2 shows the time plot of the pilot signal,
composed of a single chirp pulse.

Figure 3.2: Time plot of the scaled pilot chirp signal
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3.5.2.2 The Identifier

Our system is intended to rely only on ultrasound, without the need for RF
signals like Bluetooth or WiFi. Therefore, the source's unique identifier should
be embedded in the ultrasonic signal itself. To achieve this, we use frequency
multiplexing as a modulation scheme, and we append additional chirp signals to
the pilot. This way of signal modulation ensures flexibility and scalability of the
system. The identifier is a unique binary sequence, represented by a train of
chirp pulses. Bits 0 and 1 are assigned to two chirp signals with different
frequencies. We choose to represent the bit 0 by a chirp whose frequency band is
20.5-21kHz, and the bit 1 by another chirp of 21-21.5kHz. Figure 3.3 shows the
frequency allocation of the signals.

Figure 3.3: Frequency allocation of chirp signals

The number of rooms determines the length I of the identifier. As a rule,
I = dlog2 Ne bits are needed to represent N rooms. To give an example of the
transmitted ultrasonic signal, and without loss of generality, we consider a
scenario where we have 8 rooms, so that the identifier is composed of 3 bits.
With 3 bits, the binary sequence identifiers are: 0002,0012,. . . ,1112. Each one of
these unique identifiers is assigned to a room. Figure 3.4 shows four of the eight
signals assigned to the rooms, while the remaining four are similar and go from
1002 to 1112. The period of emission T defines the update rate of the receiver,
which should also be equal to the recording time.
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Figure 3.4: Transmitted ultrasonic signals for different rooms

3.5.3 Ultrasound Signal Decoding

The receiver is responsible for identifying the room it is inside. It continuously
listens to the environment and records the received sound. To identify the
correct room, the receiver processes the recorded signal to decode the ultrasonic
component. The detection process is divided in three steps, in order to ensure its
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Figure 3.5: Flow chart of the localization process

robustness while keeping computations as low as possible. Decoding starts by
filtering the recorded signal, then a coarse detection step locates the pilot signal,
and finally a fine decoding step decodes the information embedded in the
ultrasonic signal, and retrieves the identifier bit sequence. In case no collision is
detected, the system computes a value indicating the reliability of the result,
which we call the confidence score. As a summary, the flow chart of Figure 3.5
depicts the complete localization process.
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3.5.3.1 High-Pass Filtering

The signal recorded by the microphone contains different frequencies ranging from
low audible frequencies, up to high non audible ones. In order to filter out low
frequencies and make the system immune to noise, the recorded signal is filtered
using a discrete-time high-pass filter to keep only the ultrasonic components at
20-22kHz, before proceeding with the decoding process.

3.5.3.2 Coarse Detection

In this step, the receiver checks whether the ultrasonic signal was actually received,
indicating that the device is in range of the localization system. The algorithm
looks for the pilot signal in the whole recorded signal, and, if found, locates its
position inside this signal. If the pilot signal is not found, the receiver is assumed
to be out of range, and is not in any of the designated rooms. To detect the pilot
signal, a matched filter is used by correlating the received signal with the known
pilot signal. The matched filter was chosen as it is the one that maximizes the
signal-to-noise ratio. The peak correlation result is compared against a certain
threshold, which is empirically calculated and set. If the peak correlation value
exceeds the threshold, the ultrasonic signal is considered to be received successfully,
the mobile device is then assumed to be in one of the designated rooms, and the
fine decoding step takes place. Otherwise, the mobile device is assumed to be out
of range. The position of the peak correlation indicates the starting point of the
pilot signal, as shown in Figure 3.6. The position of the pilot in the recorded signal
is used to decode the subsequent bits.

Let the transmitted pilot signal be X = [x1, x2, ..., xN ] and the recorded signal be
Y = [y1, y2, ..., yL] where L À N . The peak correlation value is given by Equation 3.1:
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Figure 3.6: The first plot shows the recorded audio signal. The second plot shows the result of
its cross-correlation with the known pilot signal

peak cor r el ati on = max
k

N∑
n=1

xn y(n+k)

for 0 ≤ k ≤ L−N

(3.1)

The starting point of the pilot signal corresponds to the index of the peak
correlation:

K ∗ = argmax
k

N∑
n=1

xn y(n+k) for 0 ≤ k ≤ L−N (3.2)
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3.5.3.3 Fine Decoding

Once the pilot signal is located, the receiver proceeds to decode the identifier
binary sequence, bit by bit. To decode one bit, the receiver correlates, in time
domain, the corresponding signal with the two chirps that are used to represent
the bits 0 and 1. Assuming the two chirps that modulate the bits 0 and 1 are
respectively A = [a1, a2, ..., aN ] and B = [b1,b2, ...,bN ], the receiver calculates the
following two quantities to decode the first bit that follows the pilot signal:

bi t Z er o Cor r el ati on =
N∑

n=1
an y(n+N+K ∗) (3.3)

bi t One Cor r el ati on =
N∑

n=1
bn y(n+N+K ∗) (3.4)

where K ∗ is the index found in Equation 3.2. If the signal is successfully received,
one of the two quantities resulting from Equations 3.3 and 3.4 will be positive and
above the threshold. This quantity corresponds to the actual received bit, while
the other one will be close to zero, as a result of correlating with the wrong bit. If
the result of Equation 3.3 is the one that is positive, then the signal is decoded as
0, and if it is the second one that is positive, the signal is decoded as 1. However,
if both quantities of Equations 3.3 and 3.4 are positive and above the threshold,
this indicates that two different signals were superposed and that a collision took
place between the ultrasonic packets of adjacent rooms. In Section 3.6, we will
explain how the occurrence of such collisions is minimized.

Decoding the subsequent bits goes similarly. The receiver should know the length
of the identifier beforehand. Once all bits are decoded and no collision is detected,
the identifier binary sequence can be mapped to the correct room number, and
the room is successfully identified.
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3.5.4 Confidence Score

When looking for the pilot signal in the recorded sound, the receiver selects the
highest peak of the correlation result. In case multiple packets from different
rooms are received, this will yield the strongest signal among them, which will be
used then to identify the corresponding room. However, this does not indicate how
reliable the localization result is. Therefore, we introduce the confidence score, as a
measure of the reliability of the result. Instead of considering just the highest peak
value of the correlation, the receiver also locates all other peaks that are above the
threshold, which indicate the signals that are received from the adjacent rooms. If
M peaks are detected in total, we refer to the i th peak as Pi , and to the maximum
peak as Pmax . Then, the following formula is used to compute the confidence level
as a percentage:

confidence score = 100× Pmax∑M
i=1 Pi

(3.5)

The previous formula can be interpreted as the following: if only one signal is
detected, the confidence score of the result of room localization is 100%. Otherwise
if multiple signals are received, although the strongest among them is used to
identify the room, the confidence score in this case is penalized by an amount that
is equivalent to the relative intensities of other received signals. Figure 3.7 shows
an example where three different packets were received. The highest peak in this
case (P2) is used to identify the room, while the other two are considered to be
received from the adjacent rooms, and are used to calculate the confidence score,
which in this example is equal to around 60%.

3.6 Packet Collision

Transmitted signals from adjacent rooms may interfere, especially when the user
is at a boundary point between rooms. Collided ultrasonic packets may lead to
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Figure 3.7: Three different signals received with different intensities

erroneous detection by the receiver. This section explains how such collisions could
be detected, and also suggest a method to avoid collisions.

3.6.1 Collision Detection

A collision is assumed to take place at the receiver when the latter is not able
to decode the received signal correctly. Failing to decode one or more bits in the
identifier sequence will indicate a collision of two or more signals. As mentioned
earlier, if the results of Equations 3.3 and 3.4 both yield positive values above the
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threshold, then this indicates that two different signals modulating bits 0 and 1
have interfered, and a collision of packets has occurred. In this case, the receiver
cannot identify the correct room, and reports an error due to collision. Then, it
listens to the next transmitted packet in order to identify the corresponding room.

3.6.2 Collision Elimination

Collisions are desired to be fully eliminated. In our system design, we start from
the assumption that the transmitters are not synchronized, aiming for a system
that has a low complexity and which does not require the deployment of extensive
infrastructure. Hence, we assume that we do not have control over the emission
time instants of different transmitters. Under this assumption, we show that packet
collisions cannot be completely eliminated.

We consider the scenario depicted in Figure 3.8, where two transmitters are placed
in two adjacent rooms. Each transmitter emits an ultrasonic packet periodically
every T seconds. The two transmitters are not synchronized, we denote by ∆t the
time difference between their emission time instants:

−T <∆t < T

The receiver Rx that needs to be located is somewhere in the boundary region
between the two rooms, and can hear both emissions. Assume that the ultrasonic
packet emitted by the first transmitter reaches the receiver at time t1, and the one
emitted by the second transmitter at time t2. Taking into account the propagation
time of the ultrasonic signal, t1 and t2 can be written as:

t1 = nT + d1

cai r

t2 = nT +∆t + d2

cai r

where cai r is the speed of sound in air.
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Figure 3.8: A scenario showing two transmitters of adjacent rooms, and the receiver in the
boundary regions between them

Assuming that the signal duration is Tsi g nal , the condition on t1 and t2 so that no
packet collision occurs is such that:

|t2 − t1| > Tsi g nal

which yields:

|∆t + d2 −d1

cai r
| > Tsi g nal (3.6)

This means that in order to guarantee no packet collision, ∆t and the distance
difference (d2 −d1) should satisfy the condition in Equation 3.6. But since ∆t

can take any value in the interval (−T,T ), the aforementioned condition is not
guaranteed to hold. An example that violates the condition is when ∆t is very
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Figure 3.9: Adjacent rooms have slightly different periods of emissions: no successive
collisions occur, and the time between two collisions is maximized

small (close to 0), and the values of d1 and d2 are very close to each other, making
the result of |∆t + (d2−d1)/cai r | less than Tsi g nal .

Moreover, if a collision happens at some point P , it will lead to infinite collisions
at that point, because the values of T , Tsi g nal , and ∆t are constants.

3.6.3 Collision Avoidance

As collisions cannot be fully eliminated, we aim to reduce the probability of their
occurrence. In other words, if a collision occurs at a certain time, we try to
maximize the time that will elapse before another collision would occur again. We
found that this is not possible if different transmitters have the same period of
emission T . To reduce the probability of collisions between signals of adjacent
rooms, we propose to assign different periods of emissions to the corresponding
transmitters. We found that the best strategy to reduce the probability of collisions
is to assign periods of emissions which differ exactly by Tsi g nal . Figure 3.9 shows
the emission time instants of transmitters of adjacent rooms.
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With this technique, the chance of successive collisions is eliminated. Moreover, if
a collision occurs at a certain time at some point P between signals of adjacent
rooms 1 and 2, the next collision at point P will occur at tcol l i si on, which in this
case is:

tcol l i si on = nT1 = mT2

where m and n are the number of emissions of transmitter 1 and 2 respectively,
before the next collision occurs (as shown in Figure 3.9). Knowing that the first
collision occurs when m = n −1, and replacing T2 by T1 +Tsi g nal , we get:

tcol l i si on = nT1 = (n −1)(T1 +Tsi g nal )

which yields:

n = 1+ T1

Tsi g nal
(3.7)

This means that one collision will happen every n transmissions, so the probability
of collision is:

col l i si on pr obabi l i t y = 1

n
= Tsi g nal

T1 +Tsi g nal
(3.8)

3.7 Experimental Evaluation

3.7.1 Experimental Setup

In order to test the system's functionality, we have implemented it in our lab, at
the Battelle building of the University of Geneva. We used one fixed loudspeaker
per room, which periodically transmits a unique ultrasonic packet. The chosen
periods of emission are around 5sec. We focused the tests on two adjacent rooms
with different dimensions, along with the corridor, as shown in Figure 3.10. The
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rooms were assigned distinct periods of emissions as described in Section 3.6. On
the receiver side, an Android application was developed for room localization.
This application receives the broadcasted ultrasonic signals, and implements the
decoding process described in Section 3.5. It was installed on a Samsung Galaxy
S5 smartphone.

Figure 3.10: A map showing the rooms subject to testing

3.7.2 Tests and Results

We chose 20 different points to cover the selected area, as shown in Figure 3.11.
At each of these points, 100 measurements were recorded consecutively, using the
Android localization application, as Figure 3.12 shows, and under ambient noise
conditions. The experiments were repeated twice: the first time with closed doors,
and the second with open doors.

Tables 3.1 and 3.2 show the results for the case with closed doors, and that with
open doors respectively. The tables show the percentage of the results that match
the correct room in which the user is, and the average of the confidence scores of
these results.
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Figure 3.11: Points at which the tests were performed

Figure 3.12: A snapshot of the Android localization application

Interpretation of Results

In the case of closed doors, the ultrasonic signals are confined to the room in
which they are emitted, and the signals leaking from adjacent rooms are very
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Table 3.1: Room Localization Results - Closed Doors

Point Number Correct Room Results Average Confidence Score
1 100% 94.8%
2 100% 95.2%
3 100% 96.7%
4 100% 95.1%
5 100% 94.5%
6 100% 94.6%
7 100% 95.1%
8 100% 94.5%
9 100% 95.3%

10 100% 96.2%
11 100% 95.1%
12 100% 95.6%
13 100% 97.7%
14 100% 96.5%
15 100% 95.1%
16 100% 94.8%
17 100% 96.0%
18 100% 95.9%
19 100% 98.2%
20 100% 97.7%

weak. This leads to perfect room localization results, with high confidence scores,
and also causes the collisions to vanish. On the other hand, when the doors are
open, the signals from adjacent rooms can interfere, leading to packet collisions.
However, the probability of such collision is very low, thanks to our suggested
method. This explains why we obtain very low false detection results, which
correspond to collided packets.

The confidence score is affected by the strength of the signals received from
adjacent rooms. Nonetheless, it is up to the application layer to use this score, in
order to judge the reliability of the localization result, when multiple signals are
received. It is also notable that the confidence score is high when the receiver is
close to the transmitter, and decreases as we move away from it.
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Table 3.2: Room Localization Results - Open Doors

Point Number Correct Room Results Average Confidence Score
1 99% 68.3%
2 99% 77.1%
3 100% 82.8%
4 99% 76.5%
5 99% 70.8%
6 99% 73.2%
7 99% 77.7%
8 100% 84.0%
9 99% 80.9%

10 99% 81.5%
11 100% 86.2%
12 100% 89.4%
13 100% 93.3%
14 100% 90.7%
15 99% 75.1%
16 99% 68.0%
17 100% 83.5%
18 99% 76.2%
19 100% 90.4%
20 100% 91.9%

3.8 System Characteristic Features

In our proposed room-level localization system, we make sure to address and satisfy
the desired characteristics previously discussed in Section 3.4. As a result, here
are the main characteristic features that our system offers:

• Accuracy: As proved in the experimental evaluation, the implemented
system presents a high room presence accuracy, suitable for the purpose of
occupancy detection.

• Robustness: the methods that are used for signal modulation and processing,
like chirp signals, frequency multiplexing, and matched filters, make the
system robust against ambient noise. Moreover, assigning distinct periods
of emission guarantee low collision rates.
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• Availability: as it is sufficient to have deployed sound speakers for our
system to work, it is suitable to use in many environments, such as
museums, hospitals, offices, and shopping malls, without the need to deploy
additional infrastructure. As ultrasounds do not alter audible sounds, the
same speakers can still be used to play music or to broadcast voice
messages.

• Scalability: the system is easily scalable to accommodate any number of
rooms.

• Ease of deployment: the system can be easily deployed and ready to use
without the need for an offline training phase.

• Low complexity: by dividing the ultrasound signal into two parts, the
decoding process becomes of low complexity in terms of number of
operations, which guarantees a fast response time on the receiver side.
Having the pilot signal as a common part for all rooms, requires the receiver
to correlate the recorded signal with the pilot signal only, before proceeding
to identify the corresponding room. If we did not have a common signal
part, the receiver would have to match the recorded signal with all possible
signals from different rooms, in order to identify the correct room. In that
case, signal decoding becomes computationally expensive, especially when
the system is scaled to accommodate a large number of rooms.

3.9 Summary

In this work, we have proposed a device-based room-level localization system using
ultrasound, that can be built out of COTS components. The designed system is
robust, scalable, and has a low computational complexity and collision rate. It
was shown to have a very good performance in ambient noise environments. The
system was designed for localization inside houses in the context of smart heating,
however its characteristic features make it a suitable solution to use for other
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applications and in different environments, such as hospitals, museums, offices,
shopping malls, etc. This is because many of these environments are traditionally
equipped with loudspeakers, which can be used for occupancy detection.
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4 UltraSense: Device-Free Motion
Detection System

4.1 Chapter Abstract 1

With this chapter, we open the part that follows a device-free approach for
occupancy detection. We investigate the use of ultrasounds for sensing the
presence of people in indoor environments. This chapter focuses on motion
sensing as one means to infer the occupancy. We present a self-calibrating
ultrasonic motion sensing system, which we call UltraSense. UltraSense uses
active ultrasound to sense persons' movements, based on the Doppler effect. It
leverages unsupervised learning to automatically calibrate its parameters in a
seamless way, according to the surrounding environment in which it is installed.
This ability avoids the need for manual calibration of the sensing system for each
new environment. Additionally, it makes the system operate regardless of the
specific room environment, and whether it is in LOS or NLOS conditions.
UltraSense is non-intrusive, in the sense that neither does it need a physical
contact, nor does it require the user to carry a device with her. A working

1A shorter version of this chapter was published in: A. Hammoud, M. Deriaz and D. Konstantas,
"Ultrasense: A self-calibrating ultrasound-based room occupancy sensing system," Procedia Computer
Science, vol. 109C, pp. 75–83, 2017, 8th International Conference on Ambient Systems, Networks and
Technologies, ANT 2017, May 2017, Madeira, Portugal.
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prototype was implemented to test the proposed system, and the results show
that the system achieves high detection rates in different scenarios.

4.2 Introduction and Related Work

As we described previously, a device-free approach is based on using environmental
sensors to sense the occupancy of persons, without requiring them to carry a
device. One means of inferring the presence of persons in an indoor space is
motion detection. Motion detection is based on the Doppler effect, which states
that a moving object causes a frequency shift in the signal that bounces off this
object [83]. This frequency shift, which is directly proportional to the velocity of
the moving object that reflects the signal, is given by the following formula:

∆ f (si g nal ) =
2vob j ect

c
fsi g nal (4.1)

where vob j ect is positive if the object is approaching, and negative if it is receding
from the signal source. c is the speed of propagation of the signal.

The Doppler effect principle is implied in different applications. Radars leverage
this principle to monitor planes and ships using RF signals. Another application
are the speed guns used by the police and law enforcement agencies to measure
the velocity of cars on the roads (Figure 4.1). Additionally, the concept is used in
medical fields to observe blood flow and velocity, and in industrial applications to
monitor fluids inside tubes.

Ultrasonic signals can be used to sense human motions based on Doppler effect.
Ultrasounds present some characteristic advantages over RF signals in this regard.
From one side, commonly used ultrasounds have a much lower frequency range
(typically 20kHz up to few MHz) when compared to X-band RF signals (in the
range of 10GHz). Moreover, ultrasounds propagate much slower than RF signals.
Therefore, a frequency shift caused by a moving person will be much higher and
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Figure 4.1: A speed gun used by police to detect a car's speed.

Source: https://i2-prod.leicestermercury.co.uk/news/article262755.ece/ALTERNATES/s615b/
A-traffic-officer-using-a-laser-speed-gun.jpg

hence more detectable for an ultrasonic signal as compared to an RF signal. For
example, using Equation 4.1, a person who is moving at a speed of 0.5m/s will
cause a frequency shift of 116 Hz for an ultrasonic signal whose frequency is 40kHz,
but only a shift of 0.033 Hz for an RF signal whose frequency is 10GHz. The use of
RF signals is also governed by regulations of frequency allocation [84], and hence
some frequency bands are subject to license, whereas ultrasounds can be used
without authorization. On the other side, since ultrasounds are mechanical waves,
they are limited to walls in their propagation. This characteristic makes them
better suited for occupancy detection and guarantees a finer granularity, since
moving objects behind walls will not cause false positive detection.

Let us take a look at the related works in the literature. An early work by
Geisheimer et al. [85] uses a continuous-wave (CW) RF radar operating near 10.5
GHz for human gait analysis. Since the movement of different body parts (arms,
torso, legs) can cause multiple frequency shifts with different amplitudes to the
reflected signals, processing the reflected signals could offer a lot of information
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and allows to extract various parameters of the human gait. A similar work [86]
uses a micro-Doppler radar system for the acquisition of human gait signatures.

Ekimov et al. [87] use active ultrasound to analyze human motions by leveraging
Doppler shifted signals. Similarly, Mehmood et al. [88, 89], they employ an
ultrasonic sonar at 40kHz to measure the Doppler signature generated by the
motion of body segments using different electronic and signal processing schemes.
In [90], Raj et al. present their prototype that comprises an ultrasonic
transmitter and receiver operating at 40kHz, which uses the Doppler effect
principle for various applications, like motion detection, gesture recognition and
speech recognition.

4.3 Our Contribution

Our work differentiate from the previous works in these main aspects:

1. Our motion detection system uses unsupervised learning to classify the
collected data and infer the room occupancy. In this sense, there is no need
for a manual labeling of the different frames. The system uses methods to
automatically calibrate its parameters according to a each specific
environment. This fact makes the system easily deployable and ready to
use for every new installation environment.

2. The way we designed our system makes it work regardless of the specific
installation, and whether it’s in direct LOS or in NLOS with the occupants,
whereas commonly available occupancy detection technologies are limited to
LOS conditions.

3. We use commodity hardware (speaker, microphone) in our system with a
frequency of 20kHz. This characteristic proves that it is possible to use
such hardware, which can be easily available and deployed, for device-free
occupancy sensing in different indoor environments.
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In the rest of the chapter, Section 4.4 shows the design aspects of UltraSense, then
Section 4.5 explains the methodology used for occupancy detection. Section 4.6
presents the system calibration method, and the experimental evaluation is shown
in Section 4.7. Finally, Section 4.9 concludes this chapter.

4.4 System Design

While studying the use of ultrasound in motion sensing to infer the occupancy, we
aim for a system that satisfies the following requirements:

1. High accuracy, so as to offer a reliable occupancy information for the
prospective applications.

2. Operation on a room-scale, as it’s the most common granularity level suitable
for a wide range of applications (lighting, HVAC systems, intrusion detection,
etc.)

3. To have an automatic calibration, as to reduce the deployment complexity
and avoid the need for manual intervention for each new installation. This
feature also allows the system to operate regardless of the specific settings of
the environment in which it is installed, and whether it is in LOS or NLOS.

Our designed system, UltraSense, uses active ultrasound to detect movements
inside a room. It transmits periodically an ultrasonic signal, and observes the
corresponding reflected signal. Doppler shifts in the signal frequency will indicate
the detection of a movement. Room occupancy is then inferred based on motion
detection. Acoustic signals emitted inside a room are generally confined to that
same room, and hence, alterations to these signals are assumed to happen due
to moving objects inside the room. Figure 4.2 shows how the transmitted signal
would propagate: as the signal reflects on walls and objects, a person A who is
moving inside will cause some alterations to the frequency of the signal, whereas
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Figure 4.2: Acoustic signals are generally confined to the room in which they are emitted.

Figure 4.3: Architecture of the occupancy sensing module.

moving person B who is outside will not alter the signal, since the latter does not
propagate through the wall.

UltraSense requires one module per room. Each module is composed of a
transmitter, a receiver, and a control/processing unit, as shown in Figure 4.3.

The transmitter and receiver shall support the transmission of ultrasonic signals.
As ultrasonic transducers which operate at around 40kHz are generally
characterized by a narrow beam, we favor the use of commodity speakers and
microphones since they have a wider directionality. These in general can support
up to around 22kHz, as their commonly used sample rate is 44.1kHz. UltraSense
system uses the frequency range of 20-22kHz, which is non-audible and at the
same time supported by commodity hardware. The control/processing unit is
used to trigger the signal transmission, record and process the received signal,
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Figure 4.4: Frequency spectrum of the transmitted pulse around the central frequency fc .

and indicate whether the the room is occupied or not. This unit also implements
the self-calibration method, as described in Section 4.6, and sends the occupancy
results to a central system.

The transmitted signal is a finite sinusoidal pulse of frequency fc , represented in
discrete time as:

x[n] = sin2πn( fc/fs) f or n = 0,1, . . . ,Tsi g nal × fs (4.2)

where fs and Tsi g nal are the sampling frequency and the signal duration,
respectively. The frequency spectrum of the transmitted signal can be obtained
from the magnitude of the Discrete Fourier Transform (DFT). Figure 4.4 shows
the frequency spectrum of the transmitted pulse for fc = 21kHz.
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4.5 Occupancy Detection

A frame is defined as one transmission/reception of the ultrasonic signal. The
receiver records the received signal y[n] for each frame, and computes the
magnitude {|Y [k]|} of its discrete time Fourier transform (DFT), which represents
its frequency spectrum:

|Y [k]| = |F {y[n]}|k = |
N−1∑
n=0

y[n]e− j 2π
N nk | f or k = 0,1, . . . , N −1 (4.3)

The discrete sequence {|Y [k]|} can be efficiently calculated using the Fast Fourier
Transform (FFT). A still frame is one in which the room is unoccupied, and hence
no movements occur inside. We denote its frequency spectrum by {|Yst i l l [k]|}.
To detect any movements inside the room, the system compares the frequency
spectrum of the current frame, to that of the known still frame. The motion
score is a parameter calculated by the system for a given frame to quantify the
movements, and hence infer the presence of people inside a room. It reflects the
variations that took place to the spectrum as compared to a still frame, as to detect
Doppler shifts in the signal. In the general cases of multiple-person occupancy, or
when a person is not necessarily moving with a constant speed in a steady direction,
which is commonly the case, the Doppler shift will not consist of one well-defined
frequency, but rather of multiple frequency shifts around the central frequency fc .
Figure 4.5 shows the frequency spectrum which reflects the Doppler shifts in the
ultrasonic signal caused by a moving person, as compared to a still frame. To
account for all cases, we take into consideration the total amount of frequency
shifts around fc , rather than the value of each one individually. The motion score
that reflects the variations in the frequency spectrum, as compared to a still frame,
is given by:

moti on scor e = ∑
k∈I

| |Y [k]|− |Yst i l l [k]| |

wher e I = [ fc −∆ f (max), fc )∪ ( fc , fc +∆ f (max)]

(4.4)
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Figure 4.5: Difference in frequency spectrum between a still frame (blue) and a frame with a
moving person (red).

I is the frequency interval of interest around the center frequency fc . The
maximum Doppler frequency shift ∆ f (max) to be detected is a desgin choice, and
is determined by the maximum possible velocity of a person's motion vmax :

∆ f (max) =
2vmax

c
fc (4.5)

When the room is unoccupied, the frequency spectrum of the recorded signal will
be similar to the still one, and the motion score in Equation 5.1 should reduce to
zero. However, due to possible noise, tiny differences between the two still spectra
will yield a motion score that is close, but not equal, to zero. On the other hand,
when there is a movement, the spectrum of the frame will include some Doppler
shifts with respect to the still frame. The differences between the two compared
spectra will add up to some positive value, yielding a score that is larger than
the one corresponding to a still frame. In a more formal way, a threshold value
should be carefully set in order to better differentiate between the two cases. If
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the motion score of a certain frame exceeds the threshold, it will indicate that
some movements occurred in the room, while a score below the threshold value is
assumed to correspond to a still frame.

The still frequency spectrum |Yst i l l [k]| should be known to the system beforehand.
At still conditions, when there are no movements inside the room, the signal
frequency is not altered. Due to multipath propagation, the received signal will be
composed of multiple copies of the transmitted ultrasonic signal x[n]. Assuming
that M different multipath exist, the received signal, which is a summation of the
multipath signals, can be represented in discrete time as:

y[n] =
M−1∑
m=0

ρme jφm x[n −τm]+ν[n] (4.6)

where ρm, φm, and τm represent respectively the signal attenuation, phase
difference and time delay, of each of the multipath signals. ν[n] represents the
noise. The values of ρm, φm, and τm are specific for each room setting, and
depend on different parameters like room dimensions, and objects' positions.
Since they are unknown to the system, the still frequency spectrum cannot be
inferred at design time.

4.5.1 Direction of Movements

It would be useful to detect not only the presence of a person inside a room, but
also his direction of movement. By knowing whether the person is entering or
leaving the room, controlling of smart systems would become more convenient.
The information would also help to learn about the person's habits. UltraSense
can identify the direction of movements, given that it knows the position in which
it is installed inside a room.

According to Doppler theory, if the user is moving towards the transmitter he will
cause a positive shift in the signal frequency, which will show up to the right of the
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central frequency fc in the frequency spectrum. Otherwise, if the user is moving
away he will cause a negative frequency shift, showing up to the left of fc . The
positive frequency shift (PFS) parameter detects the Doppler frequency shifts to
the right of fc in the frequency spectrum:

PF S = ∑
k∈Ir i g ht

|Y [k]−Yst i l l [k]|

wher e Ir i g ht = ( fc , fc +∆ f (max)]

(4.7)

Similarly, the negative frequency shift (NFS) detects the Doppler frequency shifts
to the left of fc in the frequency spectrum:

N F S = ∑
k∈Ile f t

|Y [k]−Yst i l l [k]|

wher e Ile f t = [ fc −∆ f (max), fc )

(4.8)

Note that the previous two scores sum up together to the motion score:

moti on scor e = N F S +PF S

When the system detects a motion inside the room, it uses Algorithm 1 to
determine the direction of the movement.

4.5.2 Adjacent Rooms

Although the acoustic waves are generally confined to the room in which they
are emitted, a part of these waves may still leak outside of the room in some
cases (open doors, etc.). This leakage would cause an interference between signals
of adjacent rooms, especially at boundary points, only if they share the same
frequency. Signals interference might lead to erroneous occupancy detection results.
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Algorithm 1 Detection of movement direction

1: if (moti on scor e > thr eshol d) then
2: if (N F S À PF S) then
3: Person is moving away from the transmitter
4: else if (N F S ¿ PF S) then
5: Person is moving toward the transmitter
6: else
7: Movement detected, no specific direction
8: end if
9: else

10: No movement detected
11: end if

To solve this problem, distinct central frequencies need to be assigned to adjacent
rooms. To guarantee no interference between the signals, the difference between
the central frequencies of adjacent rooms should be at least 2×∆ f (max).

4.6 System Calibration

Both the still frequency spectrum {|Yst i l l [k]|} and the value of the threshold
constitute the system's required parameters for motion detection. When the
system is installed, it needs to learn these parameters that correspond to its
surrounding environment. Afterwards, the system uses the learned parameters in
order to detect movements.

4.6.1 Manual Calibration

A simple and straight-forward approach for calibration, would be to have the
room empty once the system is installed. The system will then trigger a series of
transmissions and recordings. The collected frames would be used afterwards to
get the still frequency spectrum, and set the threshold value accordingly. Typical
number of collected frames would be 10, with the still frequency spectrum being
their mean value, to average out the effect of noise, assumed to be additive

80



4.6. System Calibration

Gaussian. And the threshold value is set slightly above the maximum of motion
scores, calculated for the collected frames. However, this way might be tedious
and time consuming, especially because the user needs to repeat this process
every time he installs a new module in a given room. Therefore, and in order to
ensure user comfort and seamless calibration, we propose a self-calibration
method for our system.

4.6.2 Self-Calibration

The idea of the self-calibration is that the system senses the medium for a given
duration, and collects a certain number of frames, to form a training set.
Afterwards, the system uses unsupervised learning to classify the frames into still
and motion frames. The system uses the information to get the still frequency
spectrum and set the threshold value, according to the given room environment.
The system would run the self-calibration process at installation time. The
sensing duration should be long enough such that we are sure that there are
moments when the room is occupied, and some others when it is vacant. The
system keeps the frequency spectra of the collected frames. If N frames are
collected, we denote their corresponding spectra respectively by:
{|Y0[k]|}, {|Y1[k]|}, . . . , {|YN−1[k]|}.

4.6.2.1 Obtaining the Still Spectrum

The still spectrum contains no Doppler shifts, and hence it has the lowest
amplitude of frequency components. It can be obtained directly from the
collected frames, even if we don’t know the type of each frame yet. By just
selecting the absolute minimum among all the frames, for each of the frequency
components of the interval of interest I (Equation 5.1), we are sure to have
picked the lowest frequency components, which correspond to the still spectrum

81



Chapter 4. UltraSense: Device-Free Motion Detection System

Figure 4.6: Frames clustering into still and motion frames, based on their corresponding
motion scores.

{|Yst i l l [k]|}:

|Yst i l l [k]| = min(|Y0[k]|, |Y1[k]|, . . . , |YN−1[k]|) ∀k ∈ I (4.9)

4.6.2.2 Frames Clustering

The collected frames need to be divided into still and motion frames. The feature
used to classify the frames is the motion score (Equation 5.1) calculated for each
of them, using the obtained still frequency spectrum {|Yst i l l [k]|}. To cluster the
frames, we use the k-means clustering method. To initialize the algorithm, the
frame having the lowest motion score, is used as a starting point for still frames,
since it is the closest to the minimum still frequency spectrum. Similarly, the most
deviated frame from the still frequency spectrum, having the maximum motion
score, is used as a starting point for motion frames. The rest of the training frames
are then clustered into one of the two clusters. Once all frames are clustered to
their correct type, a value of the threshold can be inferred. We define the threshold
as the decision boundary given by the k-means clustering method.
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Figure 4.7: Diagram showing the self-calibration process and the occupancy sensing
algorithm.

Figure 4.6 shows the concept of frames clustering according to their motion
scores, along with the threshold value. After the system has learned the
necessary parameters through self-calibration, it becomes able to detect
movements inside the room. The system may run the self-calibration process
occasionally, in order to cope with potential changes in the environment. In this
case, the system continuously computes the still frequency spectrum and triggers
the self-calibration when the change is major. Since this process is seamless to
the users, the system can continue to operate without stop, while calibrating its
parameters. Finally, we depict the self-calibration process and the occupancy
sensing algorithm in the diagram of Figure 4.7.

4.6.2.3 Memory Usage

We briefly examine the memory requirement of the system. As for the
self-calibration process, N frames need to be recorded in order to form the
training set. We denote by T f r ame the duration of one frame. The DFT of each
frame is calculated and only the frequency spectrum of the interval of interest I

83



Chapter 4. UltraSense: Device-Free Motion Detection System

(Equation 5.1) is retained, thus the number of samples needed for each frame is:

nsamples/ f r ame = 2∆ f (max) ×T f r ame (4.10)

As N frames need to be stored during the self-calibration phase, the total required
memory size is:

Requi r ed memor y = N ×nby tes/sample ×2∆ f (max) ×T f r ame (4.11)

where nby tes/sample is the number of bytes needed to represent one sample.

Numerically, given a training set of size N = 100, a frame duration T f r ame = 3sec,
a sampling frequency fs = 44.1kH z, a maximum Doppler frequency shift ∆ f (max) =
1kH z, and assuming that nby tes/sample = 4, the total required memory size would
be around 2.3MB . Once the self-calibration process is completed, this allocated
memory can be freed, and only the threshold value and the still frequency spectrum
Yst i l l need to be stored, requiring only (1+nsamples/ f r ame) samples, or 23.44kB .

4.7 Experimental Evaluation

In order to test its functionality, we have implemented a prototype of the proposed
system. The prototype, shown in Figure 4.8, comprises a low power commodity
speaker, a commodity microphone, both connected to a Raspberry Pi board [91].
This board acts as the control/processing unit, and implements the calibration and
occupancy detection algorithms described in the previous section. The prototype
sends the occupancy results to a server via WiFi. The central frequency used is
fc = 21kH z, and ∆ f (max) = 1kH z. The purpose of this prototype is to examine the
performance and capabilities of the proposed system, rather than creating a final
product. However, once the design is validated, transforming the prototype into a
more compact model should be straightforward.
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Figure 4.8: The implemented prototype comprises a commodity speaker and a microphone
connected to a Raspberry Pi board.

To characterize the performance of UltraSense, we proceed with the following
methodology: the prototype is placed inside the room. It is first calibrated
manually as described in Section 4.6.1. Then, it runs the self-calibration method
as described in Section 4.6.2, using 100 frames as a training set to obtain the
motion detection parameters. Then, a large set of frames (1000) is recorded to
form the test set. The collected frames include some still periods when the room
is vacant, in addition to some movements when the room is occupied. During
occupancy periods, people were going inside the room, walking around, then
going out. Since we know at what moments the room was occupied, we label the
frames into still and motion frames, so that this information is used to form the
ground truth. Motion detection is applied to the test set, using the parameters
obtained from manual calibration first, then using those obtained from
self-calibration. The results are noted for comparison.

Aiming to cover different scenarios, the previous testing process is repeated for 4
different scenarios: in the first two, the prototype is placed in a small room
(6 × 3.9m) with clear LOS and NLOS (prototype placed behind a furniture),
respectively. While the other two correspond to a large room (6× 7.8m), with
clear LOS and NLOS, respectively. This way allows us to evaluate the system for
different room sizes, and also to simulate the case when the sensing module is
placed behind an obstacle. Figure 4.9 shows a portion of the testing set, as an
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Figure 4.9: Comparison of motion detection using results obtained from manual and
self-calibration, for a portion of the test set.

Table 4.1: Results of detection rates for manual and self-calibration.

Manual calibration: Self-calibration:
Scenario (detection rate | false positives) (detection rate | false positives)

#1: small room, LOS 98.2% | 1.0% 97.5% | 0.9%
#2: small room, NLOS 93.4% | 0.8% 91.8% | 1.2%
#3: large room, LOS 97.8% | 1.1% 96.1% | 1.3%
#4: large room, NLOS 89.2% | 0.7% 87.0% | 0.8%

example to illustrate how we evaluate the performance. The detection rate
represents the true positives for occupancy detection results. The detection rates
and false positives of both manual and self-calibration, are presented in Table 4.1.

Interpretation: The manual calibration uses solid conditions to infer the values
of the detection parameters, and hence it yields the finest detection that the
system is capable of. This explains the high detection rates accomplished by
manual calibration. On the other hand, the self-calibration uses unsupervised
learning to get the detection parameters, which may still deviate from the perfect
ones. Nonetheless, the self-calibration is still able to achieve high detection rates,
though they are slightly inferior to those of manual calibration. However, given
the fact that self-calibration is seamless to the users and promotes their comfort,
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and assuming that its high detection rates are satisfactory for the purpose of
occupancy detection, we decide to integrate the self-calibration, rather than the
manual one, in UltraSense system. We also note that the system still works with
acceptable detection rates with NLOS, though it is more sensitive to movements
in LOS conditions. The few false positives are due to random noises in the
environment, however a simple sliding time window algorithm should be capable
of filtering them out. The maximum range of the system is determined by the
transmission power. With the used hardware, our system was able to detect
movements within a range of around 8m. However, multiple modules may be
needed to cover larger areas.

4.8 Performance Comparison

In order to compare the performance of UltraSense, we consider the occupancy
sensing system AURES, by Shih et al. [92]. AURES uses also a 20kHz ultrasonic
signal to detect motions using Doppler effect. In the evaluation of their system,
the authors differentiate between small rooms (< 10m2), medium (10− 100m2),
and large (> 100m2). They report an accuracy of 85% with 11% false positives for
a small room, 82% with 27% false positives for medium, and 75% with 29% for a
large one. Comparing to our system UltraSense, it is able to achieve a much better
accuracy with the self-calibration method, resulting in an accuracy of 87-97% with
a much lower false positive rate (0.8-1.3%), in the tested environments.

Finally, we compare qualitatively the characteristics and capabilities of the
UltraSense system with other occupancy sensing technologies, namely the PIR
sensor, and the X-band motion detector. For this purpose, we implemented these
sensors on an Arduino board, as shown in Figure 4.10, to verify their mode of
operation. For the PIR, we used a model with a wide angle motion detection
(model Parallax 28032 [93]), and for the X-band motion detector we used the
following model (Parallax 32213 [94]). Table 4.2 shows an overview of the
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Figure 4.10: Circuit used to test the PIR and the X-band sensors.

Table 4.2: Overview of the capabilities of different occupancy detection technologies.

Occupancy Detection Works under Works under Room Self-
System LOS NLOS Granularity calibrating

PIR YES NO YES NO
X-band YES YES NO NO

UltraSense YES YES YES YES

capabilities of each technology. The PIR sensor works only in LOS and is
suitable for room scale applications. The X-band sensor has the capability to
operate in NLOS, however it is not suitable for room granularity applications as
it detects movements behind walls, leading to false positive detections. The
sensitivity of both PIR and X-band sensors needs to be manually calibrated.
Finally, UltraSense system is best suited for occupancy detection on a room
scale, and when the system is desired to work equally under LOS and NLOS,
with automatic calibration.
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4.9 Summary

In this chapter, we have presented UltraSense, an ultrasound-based motion sensing
system, which relies on unsupervised learning to self-calibrate according to the
environment in which it is installed. UltraSense is non intrusive, and is able
to work in different conditions, including LOS and NLOS. The proposed system
was validated through a working prototype, and evaluated in different scenarios.
The results show high accuracy of motion detection. The presented system is
limited to detect motions inside the room and uses this information to infer the
presence of persons. However, it does not detect at this stage the presence of a
person standing still without moving. This issue is addressed in Chapter 6, and
the system is enhanced to detect still persons by exploiting the room acoustic
response under different conditions.
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5 Power Hopping: Optimizing the
Consumption of Motion Sensing

5.1 Chapter Abstract 1

In the previous chapter, we have shown how ultrasonic motion sensors can be
used as a mean to obtain occupancy information of indoor spaces. Although these
sensors provide a high accuracy as compared to other sensors, like Passive Infrared
(PIR), they require a higher power consumption in general. In this chapter, we
propose an adaptive power switching technique, which we call power hopping. This
technique allows ultrasound motion sensors to optimize their transmitter power
level, in order to best fit their surrounding environment. The objective is to reduce
the overall energy consumption of these sensors. We have tested our method
using a sensor prototype, and the results show that, depending on the sensor's
environment, a possible saving in the transmitter power can be achieved, which
reached up to 78% in our experiments. We also derive an upper bound limit of
the method's convergence time, and we propose an automatic sensing method to
detect potential changes in the sensor's environment.

1Shorter versions of this chapter were published in: A. Hammoud, G. G. Anagnostopoulos, A. I.
Kyritsis, M. Deriaz and D. Konstantas, "Power hopping: An automatic power optimization method for
ultrasonic motion sensors," 2017 IEEE Ubiquitous Intelligence and Computing, (UIC), San Francisco,
CA, 2017, pp. 1-7. and in: A. Hammoud, M. Deriaz and D. Konstantas, "Adaptive power switching
technique for ultrasonic motion sensors," Journal of Ambient Intelligence and Humanized Computing,
jun 2018.
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5.2 Introduction and Related Work

Motion sensing is one way to infer the presence of people in indoor spaces. While
several technologies have been developed for motion sensing, PIR and ultrasonic
motion sensors remain the most prevalent in this respect [43].

PIR sensors are widely used to detect human motions, by responding to a change
in the temperature pattern across the field of view of the sensor. A PIR sensor
is considered passive as it does not emit any energy itself, but rather relies on
the pattern of the received infrared radiation in the environment [44]. Different
works have suggested algorithms to enhance the performance of PIR sensors and
the processing of their output [47–49, 51]. PIR sensors are attractive because of
their low power consumption. However, the main drawbacks of PIR sensors are
their limited accuracy (decreases with increasing distance due to the use of Fresnel
lens), and sensitivity to changes in the environment (sunlight, heating effect, etc.),
as well as their limitation to work only in line-of-sight (LOS) conditions.

Similarly, ultrasonic sensors can be used in occupancy sensing. Ultrasonic ranging
sensors are one category of them, they are used to to detect objects in the field
of view, based on the time-of-flight (ToF) of the ultrasonic signal. As stated
previously, some works [95–97] use this technique to infer the occupancy at a
specific location. On the other hand, ultrasonic motion sensors which we address
in our work, use active ultrasonic signals to sense human motions inside an area,
based on the Doppler effect principle. These sensors are helpful to obtain fine
information about the room occupancy, the direction of movements and speed of
occupants.

Ultrasonic motion sensors are promising as they are more sensitive and accurate
than PIR ones [43]. Moreover, they are capable of sensing moving objects in non
line-of-sight (NLOS), since the ultrasonic signals can propagate around objects,
unlike infrared radiations. Despite these advantages, ultrasound motion sensors
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are sill not very popular, as it is the case with PIR ones. The fact that they
are active, as compared to passive, makes their power consumption higher than
PIR, and thus limits their potential applications. Example applications of these
sensors can be found in [88], [90], and [98]. Another reason for the limited use of
ultrasounds, is the fact that some pets can still hear them, even if not audible to
humans [99]. However, reducing the transmitted signal power will also reduce the
possibility of disturbing effects on pets.

While many works have discussed the use of ultrasonic sensors in occupancy
sensing, the issue of power consumption has not attracted sufficient interest. In
their work, Mishra et al. [100] try to reduce the processing power of ultrasound
raging sensors used by robots to perceive the occupancy grid. They do so on the
logic circuitry level, and show that the power consumption can be reduced by
redesigning the processing logic circuit. However, and to the best of our
knowledge, there is no research work in the literature that focuses on reducing the
transmitter power consumption of ultrasonic sensors, as we suggest in our work.

In this chapter, we state that the required power for ultrasonic motion sensors
is not fixed, but rather it varies as a function of the sensor's environment. We
introduce the power hopping method as an automatic process to optimize the
transmitter power level to best fit this environment. The method aims to reduce
the power consumption of the sensor while preserving the performance. After
testing the method using a sensor prototype, we validated that a possible saving
in the transmitter power can be achieved, depending on the sensor's environment.
In our experiments, the power saving reached up to 78% in transmitter power.

The rest of this chapter is organized as follows. First, Section 5.3 recalls some
necessary details about the operation of ultrasound motion sensors. Section 5.4
explains the concept and algorithm of the suggested power hopping method. In
Section 5.5 we derive an upper limit for the convergence time, and in Section 5.6 we
present our technique to automatically detect changes in the sensor's environment.
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The experimental evaluation of our method is presented in Section 5.7. Finally,
Section 5.9 concludes the chapter.

5.3 Preliminaries

Ultrasound-based motion sensors use active ultrasonic signals to detect
movements of people inside a certain area, based on the Doppler effect principle.
They periodically transmit an ultrasonic signal and observe the corresponding
reflected one. Frequency shifts in the received signal indicates the detection of
movements, whereas the signal frequency remains intact when no movements
occur.

Assuming that the transmitted signal is a sine pulse of frequency fc and duration
T , its sampled version can be represented by a discrete time sequence x[n] of
length bT/Tsc, where Ts is the sampling frequency. Let a frame represent one
transmission/reception of the ultrasonic signal. The transmitted signal propagates
through the environment, and reflects on obstacles and objects. Static objects
(walls, furniture, etc) do not alter the signal frequency, while moving ones (people
walking, etc) will cause some shifts in the signal frequency.

The sensing unit records the received signal y[n] for a certain frame, and computes
the magnitude {|Y [k]|} of its Discrete Fourier Transform (DFT), which represents
its frequency spectrum. To detect movements, the frequency spectrum of the
current frame is compared against a reference still frame. The still frequency
spectrum Yst i l l corresponds to the case with no moving objects, and should be
known to the system. The difference between the two spectra reflects the frequency
shifts in the signal, and is computed by the system using the following quantity,
which we call the motion score:

moti on scor e = ∑
k∈I

| |Y [k]|− |Yst i l l [k]| | (5.1)
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where I is the ultrasound frequency band to consider around the signal frequency
fc . The result of Equation 5.1 is compared with a threshold value. If it exceeds
the threshold, it can be deduced that a movement is detected, otherwise if it is
smaller than the threshold, the frequency differences can be considered to be due
to noise and thus no movements are reported to be detected. We define the motion
intensity as the ratio of the motion score to the threshold value:

moti on i ntensi t y = moti on scor e

thr eshol d
(5.2)

To sum-up, the values of (Yst i l l , threshold) represent the parameters that are
needed for motion detection.

5.4 Power Hopping Method

The total power consumption of an ultrasound motion sensor is mainly divided
into signal transmission/reception and signal processing:

Ptot al = Ptr ansmi t ter +Pr ecei ver +Ppr ocessi ng (5.3)

While the power required for the receiver and signal processing is independent
from the sensor environment, the transmission power can be optimized to best fit
a certain environment and cut unnecessary power consumption, thus reducing the
overall power consumption of the sensing unit. The objective of the power hopping
technique is to find the optimal level of transmitter power that the sensor can use,
without jeopardizing the performance.

5.4.1 The Best Power for Each Setting

The required transmitter power varies from one environment to another, depending
on variables like the room dimensions, presence of obstacles, and also hardware
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Figure 5.1: A different transmitter power is required in each case.

characteristics (receiver's sensitivity, etc.). Figure 5.1 shows how the installation
environment would affect the required transmitter power. For example, if the LOS
of the system is not blocked, the ultrasonic signal propagates easily and may need
a low transmitter power. Whereas if the LOS is obstructed, as when the system
is placed behind an obstacle or furniture, a stronger signal is needed to propagate
around such obstacles.

Let Pmax and Pmi n be respectively the maximum and minimum power levels of
the sensor. Pmax allows the sensor to work in all conditions, or in other words
Pmax yields the best achievable sensor performance. However, according to the
sensor's environment, the system may still achieve the same performance with
a lower power level. Power hopping allows the system to adapt to the optimal
transmitter power Popti mal , which is the lowest possible transmitter power that
yields the same performance. The value of Popti mal should lie between Pmax and

96



5.4. Power Hopping Method

Pmi n :

Pmi n ≤ Popti mal ≤ Pmax (5.4)

The power hopping method is supposed to take place for the first time during the
initialization phase, when the sensor is installed in a new environment. Once the
optimal power Popti mal is found, the system switches to this new transmitter power
level. Subsequently, the system scans the environment for any possible changes,
and runs the power hopping process to reflect these changes as needed.

5.4.2 Relation Between Transmitter Power and Frequency

Spectrum

Before introducing the algorithm of power hopping, it is necessary to state the
relation between the transmitter power and the frequency spectrum of the received
signal.

Statement. Let the vector Y1 be the DFT of the received signal y1[n] that corresponds

to a transmitted signal x1[n], and assuming that:

• The sensor's environment has a linear response

• The transmitter and receiver do not operate in their saturation region

• The effect of the noise on the received signal is negligible

Then, if the amplitude of the transmitted signal is scaled by a constant α such that

x2[n] = αx1[n], the magnitude |Y2| of the DFT of the corresponding received signal

y2[n] is such that

|Y2[k]| =α|Y1[k]| ∀k ∈ I
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Proof. Because the sensor's environment can be modeled by a linear system, when

the transmitted signal is scaled by some constant α, the received signal will be also

scaled by the same factor. The Fourier transform is also linear, so the scaling will

also scale its result by the same factor, and therefore the magnitude of the Fourier

transform, which represents the frequency spectrum of the received signal, will be

scaled by α.

Corollary. Assume that we have the still frequency spectrum |Yst i l l | that corresponds

to a certain transmitter power P. Since the power of a transmitted signal x[n] of length

N is

P = 1

N

N−1∑
n=0

|x[n]|2, (5.5)

if the amplitude of the transmitted signal x[n] is scaled by α, then its power will be

scaled by β=α2, and thus the new corresponding still frequency spectrum |Yst i l l (new )|
will be equal to {α×|Yst i l l |} (or {

√
β×|Yst i l l |}).

Following a similar reasoning, the new threshold value to be used for comparison needs

also to be scaled by the same constant α.

5.4.3 Power Hopping Algorithm

Initially, the transmitter power that is used by the system is Pmax . The parameters
of the system (|Yst i l l |, threshold) that are initially used correspond to Pmax . The
system then tries to switch to a lower transmitter power Pcandi d ate .

Pval i d is the transmitter power level for which the sensor works well, and is
initialized to Pmax , while Pi nval i d is the transmitter power level which is too
weak to detect motions and is initialized to Pmi n .

When a motion is detected inside the room, the system hops between Pval i d and
Pcandi d ate back and forth several times. For Pcandi d ate to become valid, it should
detect the motions that Pval i d can detect with the same intensity every time,
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otherwise it is considered invalid. The number of times the system hops between
the two power levels is a design choice parameter, which we call it nhops . Setting
the value of this parameter is a trade-off: on one hand, the higher nhops is, the
more robust the switching between the two power levels is, but also the convergence
time of the power hopping method is longer. On the other hand if nhops is low,
the method converges faster, but the switching is less robust. In our design, we
choose nhops to be 3, which we empirically found to be a good middle choice to
keep the switching robust while keeping the convergence time short enough.

When the system hops between Pval i d and Pcandi d ate , it calculates every time the
motion score:

moti on scor e(val i d) = ∑
k∈I ||Yval i d [k]|− |Yst i l l [k]||

moti on scor e(candi d ate) = ∑
k∈I ||Ycandi d ate [k]|

−pPcandi d ate/Pval i d ×|Yst i l l [k]||
(5.6)

Note that in Equation 5.6, the new still frequency spectrum is calculated using
the reasoning of Corollary 5.4.2 (hence the square root in the equation).

Pcandi d ate is then considered valid, if the following holds for each time:



moti on scor e(val i d) > thr eshol d

and

moti on scor e(candi d ate) >
p

Pcandi d ate/Pval i d × thr eshol d

and

moti on scor e(val i d)
thr eshol d ≈ moti on scor e(candi d ate)p

Pcandi d ate/Pvali d×thr eshol d

(5.7)

The new threshold value is calculated as discussed in Corollary 5.4.2 as well. The
first condition in Equation 5.7 indicates that a motion is being detected with
Pval i d , the second condition means that the motion can also be detected with
Pcandi d ate . The last condition requires that Pcandi d ate detects the motion with
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the same intensity compared to Pval i d , ensuring that the switch of power levels is
robust. The approximate equality, instead of full equality, is used to account for
possible noise in the signals.

When Pcandi d ate is found to be valid, the system switches to this new power
level and updates the parameters (|Yst i l l |, threshold), otherwise it picks another
candidate power level, as the middle value between Pval i d and Pi nval i d , similar to
a binary search. We assume that during the short time that this iteration takes,
it is valid to consider that a person's movement is continuous.

The system continues the power hopping process, until the valid power Pval i d

does not change more than a certain amount ε. At this time, the optimal power
Popti mal is assumed to be found, and the system switches to this new transmitter
power level. Algorithm 2 presents the power hopping method in pseudo-code.

Algorithm 2 Power hopping algorithm

1: procedure POWER HOPPING

2: initialization:
3: Pval i d ← Pmax

4: Pi nval i d ← Pmi n

5: Pcandi d ate ← Pmi n

6: iteration:
7: while (Pval i d −Pcandi d ate > ε) and (motion detected) do
8: hop between Pval i d and Pcandi d ate

9: if Pcandi d ate is valid then
10: Yst i l l [k] ←p

Pcandi d ate/Pval i d ×Yst i l l [k] ∀k ∈ I
11: thr eshol d ←p

Pcandi d ate/Pval i d × thr eshol d
12: Pval i d ← Pcandi d ate

13: else
14: Pi nval i d ← Pcandi d ate

15: end if
16: Pcandi d ate ← (Pval i d+Pi nval i d )/2

17: end while
18: result:
19: Popti mal ← Pval i d

20: end procedure
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Figure 5.2: Power hopping example: adapting to the optimal transmitter power level.

5.4.4 Power Hopping Example

In this section, we illustrate an example case showing how the power hopping
method works. We consider the scenario shown in Figure 5.2. First, the system
is using the maximum power Pmax to detect persons'movements. Once it detects
a motion, it triggers the power hopping process. For the sake of this example, we
assume that the power hopping converges in 4 iterations in this particular scenario:

• Iteration 1: Pmax is a valid power level. Pmi n is the candidate power level.
The system hops between Pmax and Pmi n. Pmi n fails to detect motions, so
the candidate power is updated to P1 = (Pmax+Pmi n )/2.

• Iteration 2: power hopping between Pmax and P1. P1 succeeds to detect
motions, so it becomes the valid power level. The new candidate power is
now P2 = (P1+Pmi n )/2.

• Iteration 3: power hopping between P1 and P2. P2 succeeds to detect motions,
so the updates take place similar to Iteration 2.

• Iteration 4: power hopping between P2 and P3. P3 fails to detect motions.
In this particular example, we assume that the new candidate power is such
that P2 −Pcandi d ate < ε, and the power hopping process terminates at this
point.
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Power hopping converges to P2, which is considered to be the optimal power level.
The system switches to this power level, and from this moment on uses it to detect
motions.

5.5 Convergence Time

The time required for the power hopping method to converge, depends on several
parameters. In this section, we derive an upper bound of this time.

Let ni ter ati ons be the number of iterations needed for the system to converge. The
method runs as long as the following condition holds:

Pmax −Pmi n

2ni ter ati ons−1
> ε (5.8)

Solving for ni ter ati ons yields:

ni ter ati ons < 1+ log2(
Pmax −Pmi n

ε
) (5.9)

which means that the maximum number of iterations for the method to converge
is:

ni ter ati ons = 1+blog2(
Pmax −Pmi n

ε
)c (5.10)

The total time of the process depends on the time required for each iteration.
Assuming that the processing time after each transmission is negligible, the time
it takes for each iteration ti ter ati on depends on the number of hops nhops from
Pval i d to Pcandi d ate and the time of each transmission ttr ansmi ssi on:

ti ter ati on = 2×nhops × ttr ansmi ssi on (5.11)
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The maximum required time for the power hopping process is:

tmax = ti ter ati on ×ni ter ati ons (5.12)

Yielding finally:

tmax = 2×nhops × ttr ansmi ssi on × (1+blog2(
Pmax −Pmi n

ε
)c) (5.13)

In our design, we choose nhops to be 3, as a middle choice to make the switching
decision robust while keeping the time required short enough. For a transmitted
signal duration of 10ms, and a desired resolution of ε = (Pmax−Pmi n )/128, the
maximum convergence time would be tmax = 0.48sec

5.6 Automatic Detection of Environment Changes

5.6.1 Objective

The proposed power hopping method finds the optimal transmit power for a given
environment, as previously described. However, as indoor environments are likely
to be changed with time (motion sensor moved to a new place, furniture moved
around, obstacle abundance changed, etc.), this optimal transmit power might
become invalid, and needs to be recalculated for every new setting. Therefore,
we have designed an automatic technique whose objective is to sense whether the
surrounding environment has changed, and to re-trigger the power hopping process.
As shown in the flow chart of Figure 5.3, the motion sensor checks periodically
for changes in the environment, and runs the power hopping process when some
changes are detected.
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Figure 5.3: Flow chart showing how the power hopping is triggered when the environment is
detected to be changed.

5.6.2 Technique

Detecting changes in the indoor environment is based on emitting an ultrasonic
signal and observing the corresponding reflected one. Our technique is based on
the concept that each environment is characterized by a specific response to the
emitted ultrasonic signal. Changes in the layout or obstacles will cause some
variations to the environment's response which will be reflected in the received
ultrasonic signal. The aim of our technique is to spot any variations in the
environment's response.

The sensor then processes the received signal to get the reflection pattern of the
environment. We call a reflection pattern, the result of the environment's
response to the emitted ultrasonic signal, which depends on several parameters,
like the environment's dimensions, boundaries, the position of obstacles,
furniture, etc. Therefore, any changes in this environment will be observed in the
reflection pattern.
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When the sensor switches to a new optimal transmit power level Popti mal , it
records the corresponding reflection pattern of the environment. Then, it checks
periodically if the reflection pattern has changed. Once the acquired reflection
pattern of the environment does not match the recorded one anymore, this
indicates that the environment has changed and the power hopping technique is
re-triggered, to compute the new optimal power level.

5.6.3 Obtaining The Reflection Pattern

To obtain the reflection pattern of the environment, the sensor emits a short-
time ultrasound signal. We have investigated different signal types, and our tests
showed that a linear frequency chirp signal is more immune to interference, as
compared to a sinusoidal signal. Therefore, the emitted ultrasonic signal x[n]

which we use in our method is a chirp signal, with f0 = 20kH z and f1 = 21kH z as
lower and upper frequency limits respectively. Its discrete-time representation is:

x[n] = sin2π(
f0

fs
)n + q

2
(

n

fs
)2 for 0 ≤ n ≤ b fs ×Tchi r pc (5.14)

where fs is the sampling rate, Tchi r p is the chirp duration, q = ( f1− f0)/2.

As the signal frequency range falls in the supported frequency range, the same
hardware previously used can still be leveraged for emitting the chirp signal and
receiving the reflected one.

We denote the environment's impulse response by h[n], which defines the
multipath propagation of the emitted signal's reflections, caused by the obstacles
and environment's boundaries. It can be written as:

h[n] =
M−1∑
m=0

ame jφmδ(n −τm) (5.15)

where am, φm, and τm represent the signal attenuation, phase difference, and time
delay of the mth multipath signal respectively.
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Figure 5.4: Obtaining the reflection pattern.

When the ultrasonic signal x[n] is emitted in the environment, the received signal
y[n] is the convolution of the transmitted signal x[n] with the discrete-time version
of the room impulse response h[n], plus an additive noise ν[n] assumed to be white
Gaussian:

y[n] = x[n]∗h[n]+ν[n] (5.16)

The assumed noise is used to model the random noise caused by uncontrolled
sources (ambient noise in the environment, noise introduced by the receiver, etc.).
The reflection pattern R[n] is obtained by applying a matched filter to the received
signal y[n], as depicted in Figure 5.4.

5.6.4 Comparing Reflection Patterns

Instead of calculating a numerical expression of the environment's response for
each frame, we statistically process the reflection patterns in order to spot the
variations in the environment response. We call Rr e f [n] the reference reflection
pattern, which corresponds to the current optimal power level Popti mal . A new
acquired reflection pattern R[n] is compared to the reference Rr e f [n] in order
to infer whether the indoor environment has changed. The comparison of two
reflection patterns is achieved by cross-correlation, to determine the similarity
between them. We denote by similarity index, the maximum value of the cross-
correlation result in absolute value:

si mi l ar i t y i ndex = max|cross-correlation(Rr e f ,R)| (5.17)
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Figure 5.5: Comparing two reflection patterns.

Figure 5.5 shows how two reflection patterns are compared. The similarity index
is a value ranging between 0 and 1. A high index (close to 1) shows high
similarity of the compared reflection patterns meaning that the environment did
not change. On the other hand, a low similarity index indicates the compared
reflection patterns are uncorrelated and therefore the environment response has
changed. A threshold value is used to differentiate the similarity indices, which
we empirically set to (0.9).

In Figure 5.6, we show an indicative example of the signal propagation in the case
where the environment changes. This example aims to show only the concept of the
difference in the environment's response, rather than the actual exact propagation
obeying physics laws.

5.6.5 Algorithm

Algorithm 3 describes in pseudo-code the technique of detecting the variations in
the sensor's environment.
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(a) Motion sensor in LOS (b) Motion sensor behind obstacle

Figure 5.6: Indicative example showing the difference of the environment response, when
there is a change in its layout.

Algorithm 3 Detecting environment changes

1: while (sensor is ON) do
2: power hopping: find Popti mal

3: compute Rr e f [n] . reference reflection pattern
4: envi r onment_chang ed ← f al se
5: while (! envi r onment_chang ed) do
6: compute R[n] . current reflection pattern
7: calculate similarity_index (Rr e f ,R)
8: if (si mi l ar i t y_i ndex < 0.9) then
9: envi r onment_chang ed = tr ue

10: end if
11: end while
12: end while
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5.7 Experimental Evaluation

5.7.1 Prototype

In order to test the performance of the suggested power hopping method, we
use the prototype of the ultrasound motion sensor, previously implmented. The
prototype, described in the previous chapter, is composed of a transmitter (a
commodity speaker) and a receiver (a commodity microphone) both connected to a
Raspberry Pi board [91], which acts as the control/processing unit, and implements
the described power hopping method. The transmitted signal frequency used is
21kHz, and the frequency band considered in the processing of the received signal
is 20kHz-22kHz.

5.7.2 Testing Methodology

The prototype of the sensor is fixed inside a certain area. For a chosen maximum
transmitter power Pmax , the detection parameters (|Yst i l l |, threshold) are
calibrated as described in Chapter 5. The sensor waits to detect movements
before triggering the power hopping process. A person walks to the designated
area, moves for few seconds and then leaves the area. During this time, the
sensor runs the power hopping method, and switches to the optimal power level.

Aiming to cover different environments, the previous testing process is repeated
for 4 different cases, as follows:

• Case 1: The area is a large room with dimensions 6×7.8m, the sensing unit
is placed such that the LOS is not obstructed.

• Case 2: Same area of case 1, but the sensing unit is placed behind an obstacle
blocking the LOS.
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Table 5.1: Power saving as a result of the power hopping method

Original New Power
Case Transmit Power Transmit Power Saving

#1: large room, LOS Pmax 0.31Pmax 69%
#2: large room, NLOS Pmax 0.96Pmax 4%
#3: small room, LOS Pmax 0.22Pmax 78%
#4: small room, NLOS Pmax 0.76Pmax 24%

• Case 3: The area is a small room with dimensions 6 × 3.9m, LOS not
obstructed.

• Case 4: Same area of case 3, with the sensing unit placed behind an obstacle
blocking the LOS.

Figure 5.7 illustrates the different test cases for which the power hopping method
was tested. In each case, we note the obtained optimal power level Popti mal . Once
the power hopping process is over, and as a double check, we verified that the new
transmitter power is capable of detecting the motions in the room as the previous
power Pmax .

5.7.3 Results

The results summarized in Table 5.1 show the optimal level of transmitter power
Popti mal obtained through the power hopping process, and also the power saving
in each case.

The power hopping method aims to find the optimal transmitter power, and to
cut unnecessary transmitter power amount. In general, we see that an important
power saving in the transmitter power can be achieved (up to 78% as in case 3).
The obtained results show that the required transmitter power varies in function
of the specific environment (room size, obstacles, etc.). A big room, compared
to a small one, requires more signal power to cover the whole area and detect
movements inside it. This explains why, under the same settings, the system
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(a) Case 1 : Large room, prototype in
line-of-sight

(b) Case 2 : Large room, prototype behind
obstacle

(c) Case 3 : Small room, prototype in
line-of-sight

(d) Case 4 : Small room, prototype behind
obstacle

Figure 5.7: Illustration of the different test cases
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placed in a small room (case 3) requires less power than the case of a big room
(case 1), yielding more saving in the transmitter power (78% vs 69%). On the
other hand, when the sensor is placed behind an obstacle, a higher transmitter
power is needed to propagate around the obstacle and detect movements behind
it, as compared to a case with a direct LOS. This is the reason why we notice
more power savings in cases 1 (69%) and 3 (78%), compared to cases 2 (4%) and
4 (24%) respectively. Case 2 represents an extreme environment in terms of size
and obstacles, this is why a very little saving in the transmitter power is achieved
(4%). This shows that the full maximum power level Pmax might still be needed
in such environments.

It is worth noting that although the obtained results show that it is possible to
achieve a saving in the transmitter power in some environments, the actual amount
of power saving remain specific for the settings of each environment, and the values
we obtained are only indicative in this regard.

5.7.4 Testing Environment Changes

In order to test our proposed technique for detecting the changes in the sensor's
environment, we proceed as follows: For each of the scenarios tested above, when
the power hopping process has converged and the Popti mal is found, the
corresponding reflection pattern is obtained by the sensor when the room is
vacant. We compare all the collected reflection patterns corresponding to the
different environments:

1. R1[n]: reflection pattern of Room A, sensor in LOS.

2. R2[n]: reflection pattern of Room A, sensor in NLOS.

3. R3[n]: reflection pattern of Room B, sensor in LOS.

4. R4[n]: reflection pattern of Room B, sensor in NLOS.
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Table 5.2: Similarity indices of different reflection patterns

Reflection
patterns R1[n] R2[n] R3[n] R4[n]

R1[n] 1 0.41 0.26 0.35
R2[n] 1 0.43 0.44
R3[n] 1 0.62
R4[n] 1

The aim of having multiple cases is to check how well can the changes in the
environment be detected using the reflection patterns. In the first case, we have
a large room where the sensor is placed in the corner with a direct LOS. In the
second case, the layout of the room is kept unchanged except that an obstacle is
placed in front of the sensor, blocking the LOS. Since in this case, the sensor is
supposed to detect that a change occurred and to recompute the optimal transmit
power Popti mal , it is essential to check that this change is detectable by comparing
the reflection patterns of the two Cases 1 and 2. The same reasoning is used when
comparing Cases 3 and 4, but this time in a small room with the sensor placed in
LOS and NLOS respectively.

On the other hand, comparing the reflection pattern of Case 1 or 2 with that
of 3 or 4, shows whether placing the sensor in a completely new environment is
detectable by our method. This can show that when the sensor is re-installed or
moved to in a new place, it is able to detect this change and trigger the power
hopping process accordingly, to recompute Popti mal .

Results

The similarity index between each two reflection patterns is calculated as
described in Section 5.6, to test if the proposed technique is capable of detecting
the changes in the sensor's environment. In Table 5.2, we present the values of
the similarity indices between the different reflection patterns. The results show
that the change in the environment, whether it is placing in a new environment
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(1 compared to 3 or 4 for instance), or variations within the same environment (1
compared to 2, or 3 compared to 4), is possible to detect using the value of the
similarity index of reflection patterns. All the similarity indices fall below the
threshold of 0.9 for reflection patterns of changed environment. This proves that
the proposed technique is capable of sensing any changes in the sensor's
environment, and triggering the power hopping when it is the case.

5.8 Limitations of the Proposed Method

We present in this section the possible limitations that could reduce the efficiency
of our proposed method:

• The method detects major changes in the environment, and triggers the
power hopping process when it is the case, in order to recalculate the new
optimal power level. The new power level is then used for motion detection,
until the environment changes again. However, if a given environment is
continuously changing, then the optimal power level will be continuously
recalculated and updated, thus reducing the general efficiency of the power
hopping process in achieving power saving.

• As we saw previously in the obtained results, the cut in power consumption
is higher with limited-size environments, and with low obstacle abundance.
However, if the ultrasonic sensor is used to cover a very large area, or if the
density of obstacles is relatively high, then the power reduction achieved by
the power hopping method would not be significant.

5.9 Summary

In this chapter, we have presented the power hopping method, a power
optimization technique for ultrasound motion sensors. The method aims to

114



5.9. Summary

reduce the overall power consumption of these sensors, by cutting unnecessary
transmitter power used. The results show that a possible saving in the
transmitter power can be achieved, which can be significant or minor depending
on the environment. The power hopping method can be very useful especially
when the energy source is limited, like when the sensor is battery-powered, so
that the battery life is extended. We have also derived an upper bound limit of
the method's convergence time. Additionally, we have designed a technique to
automatically detect potential changes in the sensor's environment. This
technique complements the power hopping process by making sure the obtained
optimal power level is valid for the unchanged environment, and automatically
triggering the process when changes are detected.
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6 Still Presence Sensing Using
Supervised Learning

6.1 Chapter Abstract 1

In Chapter 4, we showed how motion sensing could be used for occupancy detection.
However, the previously presented system is not able to detect still persons. In
this chapter, we address the problem of still persons detection. Accordingly, we
show how the reflection patterns of ultrasonic signals can be leveraged to detect
the presence of still persons. We propose the use of supervised learning over
segmented reflection patterns, and prove that this method is capable of detecting
minute variations in the environment's response. The experimental evaluation
of the proposed method in an office and a residential environment shows that
it achieves a high presence sensing accuracy in the case of low signal-to-noise
ratio (SNR), and a perfect accuracy in the case of high SNR, even in the case of
non line-of-sight. Among the different tested classifiers, we found that the linear
Support Vector Machine (SVM) achieves the best performance, yielding a presence
detection accuracy of 84.3%-98.4% for low SNR, and 100% for high SNR, in the
tested environments.

1A shorter version of this chapter was published in: A. Hammoud, M. Deriaz and D. Konstantas,
"Enhanced still presence sensing with supervised learning over segmented ultrasonic reflections," 2017
International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, 2017, pp. 1-8.
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6.2 Introduction and Related Work

In the previous chapters 4 and 5, we addressed the motion sensing using
ultrasound. Motion sensing is one means to infer the occupancy of indoor
environments. However, in many cases the occupants may not be moving, they
may be still (sitting, standing, etc.) and hence the occupancy sensing system
should be able to account for these cases. In this chapter, we handle the problem
of still persons detection using ultrasounds.

The use of ultrasound to sense the presence of occupants has been the subject of
many research works. Some of these works suggested the use of ultrasonic ranging
sensors, which use the time-of-flight of ultrasonic signals to determine the distance
to a given target. Commercial models of these sensors are characterized in general
by a narrow beam angle. In [95], an ultrasonic array is used along with PIR
sensors to track people in a multi-residential home. The ultrasonic array consists
of ultrasonic ranging sensors which track a person's height, using this feature as
a unique bio-feature. Ranging sensors can also be used to infer the presence at
a particular location in the room. In [97], ultrasonic ranging sensors are fixed on
the computer screen to sense the presence of a worker at his desk. The authors
train a stochastic recognition model based on Kernel Density Estimation (KDE)
for this purpose, and show a high accuracy in sensing the presence of the user.
Similarly, Jaramillo et al. [96] follow a similar approach using ranging sensors,
but use a hidden Markov model with Log Likelihood Ratio (LLR), in order to
determine the presence of a user. While these systems can achieve a good accuracy,
they are generally designed assuming a direct LOS with the user, causing the
performance to deteriorate otherwise, thus they are not suitable for scenarios with
NLOS conditions. Another work [101] considers sound-based sensors in addition
to other environmental sensors like CO2, light, current, and PIR. In order to detect
the presence of a worker at his desk, the authors apply supervised learning to train
a decision tree model using collected occupancy data.
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Caicedo et al. [98] present a sensor with one ultrasonic transmitter and an array
of ultrasonic receivers, in order to sense the presence and determine the location
of a moving person inside a room. In their designed system, they consider the
case of multipath propagation with one signal reflection. They also base the
signal processing on the assumption that the LOS signal is one of the multipath
components, and that the occupant is in line-of-sight. The system shows a high
accuracy in locating one occupant, but the authors do not mention the expected
result in case of multiple occupants present in the room. Bordoy et al. [102]
locate a person using a single ultrasonic transceiver, based on the assumption
that a human body moves slightly due to his breathing. They achieve a low error
localization in a 2-dimensional space, but require a direct LOS with the located
person as well.

In our work, we exploit the use of reflection patterns of ultrasonic signals in order
to infer the presence of still persons in indoor spaces. The reflection pattern is
compared against a reference one in order to determine a similarity index. We
argue that the similarity index evaluated over the whole reflection pattern may
not be the best factor to differentiate the case of an occupied space from that of a
vacant one. To cope with this issue, we propose evaluating the similarity indices
over segments of the reflection patterns, so that a set of features characterizing a
certain frame is formed. Supervised learning is used to train a classification model
that is valid for mapping an unknown frame into a vacant or occupied state. We
have tested the proposed method in an office and a residential environment, and
the results show a high presence sensing accuracy in case of low signal-to-noise
ratio (SNR), and a perfect accuracy in case of high SNR, even in the case of non
line-of-sight. Among the different tested classifiers, we found that the linear SVM
achieves the best performance.

The most comparable work to ours is the one recently published by Zou et al. [103],
which uses modified COTS WiFi routers to observe changes in the channel state
information (CSI). Aside from using electromagnetic signals (WiFi) in comparison
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to mechanical signals (ultrasound), the main differentiation from our work is that
they observe the change in the CSI over frequency subcarriers by using OFDM
packets. Whereas in our work, we observe the changes over the segments of the
channel response in time domain. While it is hard to argue which approach is more
accurate as this depends on the specific environment in which the sensor is placed,
it is clear that relying on the channel diversity yields a better performance, which
both methods consider. Their approach follows more or less the same methodology:
First a transmitter sends a packet, a receiver receives the reflected/scattered signals
(in their case the receiver is placed opposite to the transmitter assuming LOS, while
in our case they are co-placed), variations in CSI between adjacent recordings
indicate the presence of a person, supervised learning is used to train the model
for presence sensing (random forest in their case). One limitation of using WiFi
is that it is not tailored to room-level occupancy. In the mentioned system, the
authors consider that the person is passing through the LOS region. If this would
be changed, i.e if the transmitter and receiver are not placed in direct LOS with
respect to each other, or if both are placed next to each other (behind an obstacle
for instance), then due to the nature of WiFi signals propagation, a person who
is passing in the corresponding room or a person in an adjacent room will both
cause some variations in the CSI. These variations will be hard to map to the
corresponding environment. Therefore, any person present within a certain range
of the WiFi routers, will trigger the occupancy presence, regardless of whether he
is in the same room, or behind walls in other adjacent rooms (or even outside near
the window, or in the upper or lower floor). In order to have a better overview,
we compare both works in Table 6.1.

The main contribution of our work, is the proposed method in which the
reflection patterns of the ultrasonic signals are used to sense the presence of still
persons. The method is based on segmenting the reflection patterns and
evaluating similarity indices over these segments to form feature vectors which
can be used for classification. By segmenting the reflection patterns, the
proposed method ensures a better perception of the environment as seen by the
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Table 6.1: Comparison between our work and [103]

Work of Zou et al. [103] Our work

Underlying Technology WiFi Ultrasound
Wave Type Electromagnetic Mechanical

Tx/Rx position Opposite to each other Co-located
Channel State
Information

Frequency domain
(OFDM subcarriers)

Time domain
(segemented reflection patterns)

Classification Method Supervised learning Supervised learning
Selected Classifier Random forest Linear SVM

Requires LOS Yes No
Tailored to room-level No Yes

system, hence achieving a finer accuracy especially in the case of weak received
signals. This way, the position of the occupant and the obstruction level in the
environment have little impact over the presence detection rate.

The rest of this chapter is organized as follows. First, Section 6.3 explains in detail
our proposed method for presence sensing and discusses the reasoning behind it. In
Section 6.4 we present the experimental evaluation of the method and we comment
on the obtained results. Finally, Section 6.5 concludes the chapter.

6.3 Proposed Presence Sensing Method

6.3.1 Concept

Detecting the presence of a still person in the indoor environment is based on
emitting an ultrasonic signal and observing the reflected signals. A co-located
transmitter and receiver take care of the transmission and recording of the
ultrasonic signals, while a processor is responsible for the signal processing part
and determines the presence state.

The method is based on the concept that each environment is characterized by a
specific response to the emitted ultrasonic signal, similar to the reasoning already
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presented in 5.6. When a person is present in this environment, she will cause
some variations to the environment's response which will be reflected in the
received ultrasonic signal. The aim of our method is to spot any variations in the
environment's response with a high accuracy. The emitted ultrasonic signal x[n]

is a short-time linear frequency chirp.

6.3.2 Reflection Pattern

As we stated in the previous chapter, each indoor environment is characterized
by a given response, which depends on parameters like the environment's
dimensions, boundaries, obstacles, furniture, etc. h[n] denotes the environment's
impulse response which defines the multipath propagation of the emitted signal's
reflections:

h[n] =
M−1∑
m=0

ame jφmδ(n −τm) (6.1)

where am, φm, and τm represent the signal attenuation, phase difference, and
time delay of the mth multipath signal respectively. Note that m = 0 is the direct
propagation of the emitted signal, between the transmitter and receiver.

The reflection pattern which characterizes a given environment can be obtained
by the same procedure depicted in Figure 5.4.

6.3.3 Comparing Reflection Patterns

The presence of a person in an indoor environment causes a modification in its
response, as compared to the case where this environment is vacant.

In this chapter, we call Rr e f [n] the reference reflection pattern that corresponds
to the case where the environment is vacant. A certain reflection pattern R[n]

with unknown occupancy state is compared to the reference Rr e f [n] in order to
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infer whether the indoor environment is vacant or occupied by a person. The
comparison of two reflection patterns is done through the similarity index :

si mi l ar i t y i ndex = max|cross-correlation(Rr e f ,R)| (6.2)

A high similarity index (close to 1) shows high similarity of the compared
reflection patterns meaning that the environment is vacant. On the other hand,
a low similarity index indicates some variations in the environment response, and
therefore the environment has been occupied.

The reference reflection pattern Rr e f [n] is obtained when the environment is vacant.
To reduce the effect of noise when calculating Rr e f [n], we use multiple recorded
frames instead of a single one. Assuming that the noise is additive zero-mean
Gaussian, it can be mitigated by taking the average of a relatively large number
L of reflection patterns:

Rr e f [n] = 1

L

L∑
k=1

Rr e f ,k [n] (6.3)

6.3.4 Signal Propagation

When the ultrasonic signal x[n] is emitted in the indoor environment, it
propagates in a semispherical pattern. The direct line-of-sight copy of the signal
is the first one to be picked up by the receiver as it travels the shortest distance.
Subsequent multipath copies of the signal scattered by different objects,
obstacles, and enivronment's boundaries are received at later time instants.
After a certain time duration Ttot al , the propagated signal vanishes (becomes too
weak to be picked up by the receiver). In Figure 6.1, we show an indicative
example of the signal propagation in the case where the environment is vacant,
and when it is occupied.
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(a) Vacant environment (b) Occupied environment

Figure 6.1: Indicative example showing the difference of the emitted signal's multipath
propagation, in the cases of (a) vacant and (b) occupied environments.

The transmitted ultrasonic signal follows a pathloss model, which means that the
more distance it travels, the lower its amplitude becomes. Therefore, the reflected
copies of the signal caused by close objects are stronger than those caused by
farther ones. If we denote by m = 0 the direct propagation of the emitted signal,
between the transmitter and receiver (corresponding to propagation time τ0), by
m = 1 the first received multipath copy (scattered from the closest object), and so
on, the last detected multipath signal corresponds to m = M . Since the traveled
distance is directly proportional to the propagation time, if:

τ0 < τ1 < ... < τM (6.4)

then the corresponding amplitudes of the received multipath copies observed in
the reflection pattern R[n] are such that:

a0 > a1 > ... > aM (6.5)
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6.3.5 Segmented Reflection Patterns

In the case where the environment is vacant, the impulse response is:

hr e f [n] =
M−1∑
m=0

ame jφmδ(n −τm)

= a0e jφ0δ(n −τ0)+a1e jφ1δ(n −τ1)+ . . .

+aM e jφM−1δ(n −τM−1)

(6.6)

On the other hand, when the environment is occupied, the impulse response will
be altered:

hoccupi ed [n] =
M

′−1∑
m=0

a
′
me jφ

′
mδ(n −τ′

m)

= a
′
0e jφ

′
0δ(n −τ′

0)+ . . .+a
′
M ′ e

jφ
′
M

′ −1δ(n −τ′M ′−1)

(6.7)

While the multipath signals scattered from close objects and obstacles will not be
altered, the occupant will cause some disturbance in the subsequent multipaths.
If p corresponds to the first multipath copy that is affected by the presence of the
occupant, then the first multipath signals (m = 0, . . . , p −1) are unchanged as they
do not reach the body of the occupant. Therefore the impulse response of the
occupied environment can be written as:

hoccupi ed [n] =
M

′−1∑
m=0

a
′
me jφ

′
mδ(n −τ′

m)

= a0e jφ0δ(n −τ0)+ . . .+ap−1e jφp−1δ(n −τp−1)

+a
′
p e jφ

′
pδ(n −τ′

p )+ . . .+a
′
M ′−1

e
jφ

′
M

′ −1δ(n −τ′
M ′−1

)

(6.8)

The first unaltered multipath copies (m = 0, . . . , p − 1) of the signal are much
stronger in amplitude than the subsequent copies (m = p, . . . , M

′ −1), as explained
in the previous subsection. Therefore, the strong reflections from close objects
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Figure 6.2: Similarity indices of frames corresponding respectively to vacant and occupied
environment.

and obstacles might mask the presence of the occupant, especially when she is
not too close to the transmitter, or when she is been camouflaged by the
furniture. In this case, the occupant will cause little variation to the reflection
pattern, which will be masked by the strong reflections in the calculation of the
similarity index (Equation 6.2). Hence, relying on the single similarity index
evaluated over the whole reflection pattern, may not be decisive to detect the
presence of person, especially when the SNR is not high enough.

To illustrate the problem, we show in Figure 6.2 the values of the similarity index
evaluated for some frames corresponding to a vacant environment, then for some
other frames with the presence of an occupant. One can observe that differentiating
the two classes of frames cannot be achieved by a simple threshold-based boundary.

To cope with this problem, we propose to extend the evaluation of the similarity
index of Equation 6.2, and calculate it iteratively over segments of the reflection
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pattern. By discarding a certain segment from the beginning of the vector,
corresponding to a duration of Tseg ment , all the reflections caused by the
obstacles in the range of a propagation distance equivalent to Tseg ment are
ignored. In this case, if the little variations caused by the occupant are detected
in the remaining vector, they will not be masked by the stronger reflected signals.
Following this segmentation method, the similarity index is evaluated
subsequently over multiple segmented reflection patterns, until the end of the
reflection pattern vector is reached. This way, the i th similarity index is obtained
by discarding i segments from the reflection pattern vectors:

si mi l ar i t y i ndex [i ] = max|cross-correlation(Rr e f ,i ,Ri )| (6.9)

where Ri (respectively Rr e f ,i ) is the reflection pattern vector R (respectively Rr e f )
with i segments discarded:

Ri = R{k,k +1, . . . , N } (6.10)

with k = di ×Tseg ment × fse, and N is the total length of R .

Figure 6.3 illustrates the evaluation of the similarity indices over segmented
reflection patterns. In our design we use a segment length Tseg ment=1.5ms,
which approximately corresponds to a propagation distance of 0.5m.

Segmenting the reflection pattern into smaller chunks is equivalent to dividing
the environment into segmented spaces, thus ensuring a finer perception of the
environment, as seen by the system. Figure 6.4 illustrates this concept. However,
due to the nature of multipath propagation, the segmented spaces in reality are
not as uniform as shown in the figure, but rather have more complex shapes.
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Figure 6.3: Similarity indices evaluated over segmented reflection patterns.

Figure 6.4: Segmenting the reflection pattern is equivalent to dividing the environment into
segmented spaces (iteratively discarding the first i segments).
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6.3.6 Classification

The similarity indices evaluated over segmented reflection patterns, as described
in the previous section, are used as features to form a feature vector used for
classification. For each frame, the global similarity index is evaluated as in
Equation 6.2, and the rest of similarity indices as in Equation 6.9. The feature
vector is then formed as follows:

V f eat ur es =



g l obal si mi l ar i t y i ndex

si mi l ar i t y i ndex [1]

si mi l ar i t y i ndex [2]
...

si mi l ar i t y i ndex [Nseg ment s]


(6.11)

where Nseg ment s = Ttot al/Tseg ment .

Supervised learning is used in order to classify the feature vectors. The pattern
classification model is trained using a set of labeled frames. These frames
correspond to cases where the environment is vacant and where it is occupied by
a person. Once the correct model is obtained, it can be used to classify any
frame with unknown occupancy state, in order to determine whether the
environment is vacant or occupied.

6.4 Experimental Evaluation

In this section, we present the experimental evaluation of our proposed method.
We start by showing the set-up used, then we explain the followed procedure to
obtain the dataset and finally we present the results.
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6.4.1 Set-up

For our tests, we used an ultrasonic prototype using commercial speaker and
microphone, similarly to the previous chapter. The transmitted ultrasonic signal
is a 10ms chirp signal with limit frequencies of 20-21kHz. The received signal is
recorded with a total duration of Ttot al=0.3sec, corresponding to maximum
propagation distance of around 100m.

6.4.2 Dataset

The system is placed inside an indoor environment and the reference reflection
pattern is obtained from the average of L = 100 frames. In order to form the
dataset, a large number of reflection patterns is collected. These reflection patterns
correspond to frames where the environment is vacant, and others where it is
occupied by a person. The occupied environment frames are recorded with different
occupancy states, trying to cover the maximum number of different cases: person
close to the system (<1m), person at a moderate distance (few meters), person
far from the system (∼10m where applicable), and person lying down. In all the
cases except from the last one, the person was asked to sit down for half of the
recordings, and stand up for the rest.

For each frame, the feature vector comprising the similarity indices with respect
to the reference reflection pattern, is calculated as described in the previous
subsection. All the feature vectors, along with the corresponding labels, are then
combined to form the dataset. The dataset is formed from 1000 frames for the
vacant case, and another 1000 frames for the occupied one. Figure 6.5 shows the
distribution of the frames forming the dataset.

The described procedure is repeated for the following environments:

130



6.4. Experimental Evaluation

Figure 6.5: Dataset's frames distribution.
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Figure 6.6: Tests' scenarios showing the occupant's position for the occupied frames: (1) close
to the transmitter (standing/sitting), (2) at moderate distance (standing/sitting), (3) far from
the system (standing/sitting), and (4) lying down. Obstacles are placed to simulate the NLOS

case, and removed for LOS case

• Room A: An office room of dimensions 7.8×6m. The first time the system
was placed with a clear LOS, and the second time it was placed behind an
obstacle, blocking the LOS.

• Room B: A residential room of dimensions 5.2×3.6m. The process was also
repeated for LOS and NLOS.

In Figure 6.6, we show a map of the tests' environments and different positions of
the occupant during the recordings.

In order to investigate the effect of the SNR over the performance. We repeat the
procedure for low and high ultrasound amplitude levels, resulting in two different
SNR values for the received signal. The SNR is calculated by taking the ratio of
the amplitude of the first received signal copy to the maximum noise level:

• Low SNR: The measured SNR is around 3dB.

• High SNR: The measured SNR is around 10dB.
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Figure 6.7: Similarity indices over segmented reflection patterns for vacant (frames 1-1000)
and occupied environment (frames 1001-2000), case of high SNR, Room A, LOS.

In Figure 6.7, we consider one of the test cases, and we visualize the evaluated
similarity indices over segmented reflection patterns, which form the feature
vectors.

6.4.3 Classification Results

The pattern classification model is trained and validated using a 5-fold cross
validation over the dataset. We compare the results of several machine learning
algorithms, namely complex decision tree, Linear Discriminant Analysis (LDA),
logistic regression, linear Support Vector Machine (SVM), and weighted
K-Nearest Neighbors (KNN).

We assess the performance of each of the models using the detection accuracy,
which is the rate of true positives (occupied frames correctly classified), and the
false positive rate (vacant frames classified as occupied). Table 6.2 shows the
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Table 6.2: Performance (Detection accuracy | False positives) of the proposed method in the
case of low SNR

Decision Logistic
Indoor Environment Tree LDA Regression SVM KNN
#1: Room A, LOS 94% | 6.5 % 91% | 21.3% 93.4% | 7.4% 94.4% | 4.9% 83.1% | 28.1%
#2: Room A, NLOS 78% | 21.4% 71.8% | 35% 84.2% | 14.7% 84.3% | 10% 69.7% | 31.1%
#3: Room B, LOS 98.5% | 1.8% 82.2% | 13.3% 98.4% | 0.6% 98.4% | 1.3% 74% | 11.7%
#4: Room B, NLOS 89.1% | 9.6% 76.6% | 19% 90.7% | 12.9% 85.9% | 3.1% 63.7% | 25.6%

Table 6.3: Performance (Detection accuracy | False positives) of the proposed method in the
case of high SNR

Decision Logistic
Indoor Environment Tree LDA Regression SVM KNN
#1: Room A, LOS 100% | 0% 100% | 0% 100% | 0% 100% | 0% 100% | 0%
#2: Room A, NLOS 100% | 0% 100% | 0% 100% | 0% 100% | 0% 100% | 0%
#3: Room B, LOS 100% | 0% 100% | 0% 100% | 0% 100% | 0% 100% | 0%
#4: Room B, NLOS 99.8% | 0.3% 98.4% | 0% 100% | 0% 100% | 0% 99.8% | 0.1%

performance of each of the models in the case of low SNR, and Table 6.3 shows
the performance for the case of high SNR.

In the case of low SNR, we observe that overall the SVM classification model has
the best performance considering the detection accuracy and false positive rate
together. Nonetheless, the decision tree and logistic regression models achieve
also a comparable performance to that of SVM. However, it can be deduced that
the LDA and KNN are not valid models for the considered problem, since they
result in a low accuracy and/or high false positive rate. In general, it can be
seen that the proposed method works with non line-of-sight settings, though the
performance is slightly inferior to that of the clear line-of-sight.

Finally, in the case of high SNR, our proposed method impressively achieves a
perfect accuracy with a zero false positive rate in almost all classification models.
This can be explained by the fact that a high SNR allows the detection of minute
variations in the environment's response, while the proposed method guarantees
that these variations are fairly spotted.
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6.4.4 Performance comparison

We compare the results of our proposed system to the work of Zou et al. [103]. In
their work, they used two routers placed at 5 meters from each other. While the
maximum range is not stated in the work, if we assume that this will also be equal
to the routers’ distance (5 meters), we can estimate the area with a room whose
surface is 25m2. They report an accuracy of 95.52% with a false positive rate of
8%. Whereas in our system, and with a low SNR, we have reached an accuracy
of 98.4% with 1.3% false positive rate, in the small room (18.7m2) using SVM,
and 94.4% with 4.9% false positive rate, in the large room (45m2). These results
show that the achieved accuracy is better than the mentioned work which uses
two routers for sensing, compared to a single one in our case. In the case of high
SNR, the perfect achieved results in our system clearly outperform the mentioned
system [103].

6.4.5 Remarks

During the performed experiments we focused on still presence detection. The
user was asked to remain still during the recordings. However, similar results are
expected to be obtained in case she were moving, since in this case she will also
cause variations to the environment's response. But since the case of detecting a
moving person was already addressed and studied in Chapter 4, we limited our
experiments to the case of still person sensing.

Given the inherent nature of ultrasonic signals, they are mostly limited by
boundaries of indoor spaces (walls, doors, etc.), hence the presented system can
sense the presence on a room-scale. In order to cover a complete indoor space,
like the whole house or an office building, it is sufficient to place one sensing unit
in each room.
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Figure 6.8: Flow chart of the fusion of motion and still presence detection in one system.

6.4.6 Motion and still presence sensing fusion

In Chapter 4, we have presented UltraSense, a system to detect motions, whereas
in this chapter we describe how still persons can be detected. However, these
two systems can complement each other, since the occupants may typically move
sometimes, and remain still for some other time. Motion detection can be used to
label the frames for training the still presence sensing method, marking frames as
vacant when no movement is detected for a given time duration, and as occupied
when movements are detected. Since a person is unlikely to remain still for several
hours, the absence of activity would represent the condition for the system to re-
calibrate. A typical chosen time duration T for re-calibration would be in the order
of hours (12 or 24 hours). This will also take into account the adaption to small
changes in the environment (like moving furniture for example). In Figure 6.8, we
show the flow chart of the possible fusion of motion and still presence detection in
one system. In this case, an online learning model would be more suitable for use
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than a batch learning model.

6.5 Summary

In this chapter, we showed how the reflection patterns of ultrasonic signals can
be leveraged to infer the presence of still persons in indoor spaces. We propose to
evaluate similarity indices over segmented reflection patterns, in order to form a set
of features that can be used for classification into vacant and occupied cases. This
method allows to detect the presence of people even when they are completely still,
while the absence of line-of-sight and the occupant's position have little impact over
the system's performance. The proposed method was tested and proved to achieve
a remarkable accuracy with low SNR, and perfect accuracy with high SNR. The
linear SVM is found to achieve the best performance among the different tested
classifiers.
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7 Conclusions

The goal of this thesis was to come up with new methods and algorithms that
build on the advantages of ultrasonic signals, to sense the occupancy of indoor
spaces. Throughout our work, we addressed device-based and device-free
approaches. We focused on designing methods that are compatible with existing
and commercial hardware available to the public, and we developed algorithms
that take into consideration the robustness to noise and changing conditions, the
power consumption of the system, the computational complexity and memory
constraints. To validate our propositions, we implemented systems using
commodity hardware and components, and we assess their performance in
practice. In particular, the thesis brings the following contributions:

Device-based room-level occupancy sensing: Our solution for a device-based
occupancy sensing offers a convenient solution for smartphones to determine their
room location, by leveraging commodity sound speakers as ultrasonic beacons.
Since the system consists of placing one speaker per room, its deployment will
have a low cost when implemented in a residential house. The system has a low
complexity on the receiver side, since no synchronization is needed between the
transmitter and the receiver, and decoding the packets and detecting collisions
require a limited number of computations.
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Since our presented solution uses commodity speakers, it allows to augment many
environments seamlessly with occupancy sensing systems. Virtually any place
that is traditionally equipped with sound speakers to broadcast voice messages
or playing music, can implement our localization system. This can offer a handy
solution for environments like airports, shopping malls, hospitals, museums, and
can be used not only for energy management, but also for collecting statistics to
assess users’ experience, or in the case of emergencies.

Self-calibrating motion detection: We have presented a self-calibration
method for a Doppler-based motion detection system, that is used to infer the
presence of persons in a given place. The method allows for an easy deployment
of the motion sensors, without worrying about the specific characteristics of the
environment, and suppresses the need for a manual calibration by a technical
person. We also demonstrated how the system can be built out of commodity
hardware, and offers a high detection accuracy even in non line-of-sight scenarios.

The system can be implemented in a sensing module, and placed in the target
environment to detect persons’ movements and infer the occupancy. Moreover,
the compatibility with commercial hardware offers the advantage of seamless
integration with different types of existing devices and systems. In the
introduction, we described how this method can turn devices like smartphones
and PC’s into smarter ones. In addition, the same environments that are
equipped with sound speakers, can be equipped only with small microphones to
create a device-free occupancy sensing system across an entire building (like
airports, museums, malls, etc.).

We have shown how the direction of movements can be determined from the
reflected ultrasonic signals. However, this information will only be useful in case
we know the position of the sensor inside the room, so that we would be able to
know whether the user is entering or exiting the room. Moreover, in case
multiple users are moving in opposite directions, our system will not be able to
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differentiate the direction of movement of each of them, which requires a more
enhanced and refined algorithm.

Power hopping for automatic transmit power switching: While
ultrasonic motion sensors are more accurate than PIR and can operate beyond
line-of-sight, they still lag behind PIR when it comes to the power consumption.
Our method called power hopping finds the optimal power usage for an
ultrasonic sensor according to its environment, and cuts unnecessary transmit
power. This reduces the gap between the power consumption of the two sensor
types, and allows more potential for ultrasonic motion sensing to be employed in
real world deployments. A lower power consumption means an extended
operational time for the motion sensor, especially when the energy source is
limited, like the case of battery-powered.

Still motion detection: To complete the motion detection part, we introduced
our technique for detecting persons when they are still and not moving (sitting,
sleeping, etc.). By segmenting the reflection patterns, we can detect the minute
variations in the environment response, making sure that the persons are not
masked by the structures and furniture, even in poor signal conditions (low signal-
to-noise ratio).

The method’s use can be extended beyond occupancy sensing. In fact, by applying
the same technique over smaller segments of the reflection patterns, one can detect
variations even to the millimeter accuracy level. An application of such precision
would be to monitor the status of specific objects, like expensive jewelry in a shop’s
vitrine, or artifacts exhibited in a museum (Figure 7.1). The same technique can
be used with a different accuracy, to estimate the inventory in a warehouse. By
comparing the reflection pattern between the beginning and the end of the day,
one may be able to get a quick estimate of the difference in inventory, given a
suitable learning algorithm (Figure 7.2). This can be handy especially when the
inventory is homogeneous (same type, box size).
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Figure 7.1: An ultrasonic sensor can be placed inside a vitrine to periodically check if an item
is missing, using our described technique with segmented reflections patterns

Source:
https://image.shutterstock.com/image-photo/dubai-united-arab-emirates-uae-450w-256930495.jpg -

https://upload.wikimedia.org/wikipedia/commons/4/48/Yosemite_Museum_Artifacts.jpg

Figure 7.2: An ultrasonic sensor may be used to get a rough estimate of the difference in
inventory’s quantity

Source:
https://whyallaselfstorage.com.au/wp-content/uploads/2017/03/long-term-storage-845x321.jpg
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7.1. Looking Forward

It is worth to note that the objective of the prototypes we have developed and
presented, was to examine the performance and capabilities of the proposed
methods and algorithms, rather than creating a final product. However, once the
design has been validated, transforming the prototype into a more compact
model should be straightforward, provided the availability of the right hardware
components.

7.1 Looking Forward

We aim through our work to open the doors for application of ultrasounds in
occupancy sensing, and to shed lights on the advantages offered by this technology,
compared to other traditional solutions. Nonetheless, we envision new directions of
research that can be interesting to explore, to further enhance occupancy sensing
or use similar methods and algorithms to employ ultrasonic signals in different
applications:

Room-level localization with smartphones: We have suggested in our
method a way to assign different emission periods for ultrasonic beacons, in order
to reduce the probability of packet collisions. This requires an attention at the
moment of installation, to make sure the emission periods are correctly
distributed for adjacent rooms. However, another possibility is to have the
ultrasonic beacons use random emission periods. In this case, an ultrasonic
beacon would continuously pick a different emission period from a certain
predefined interval. This also requires adjusting the listening and decoding
algorithm at the receiver to take varying emission periods into consideration. A
research direction would be to evaluate the performance of such method, in
terms of packet collision occurrence for a given number of adjacent transmitters,
in addition to the decoding complexity at the receiver.

Occupancy count: We have focused on determining the binary occupancy, i.e. to
know whether the indoor space is occupied or not. This is useful for a certain set of
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applications, like lighting control, heating and cooling systems, etc. Additionally,
the information about the exact occupancy count can open the door for new types
of applications. Exploring techniques to infer the exact number of occupants can
be an interesting research direction. To make the link with our work, we can think
of examining the value of the motion score when sensing movements, which is
supposed to increase with a higher number of occupants. As for still occupancy
sensing, the characteristics of the reflection patterns can hold information about
the number of occupants, like to observe how the signals dissipate differently with
different number of occupants.

Activity recognition: Reflection patterns of the ultrasonic signals hold
information about the objects in the environment. The persons who are present
reflect the signals differently when having different postures. By processing these
signals and inferring the activity of the occupants (standing, sitting, sleeping,
exercising, etc.), the delivered services could be customized accordingly, like for
example switching the lights off when the person goes to sleep, or changing the
heating level when the person gets up.

In addition to processing the reflection patterns in time domain like in our
described method, frequency diversity can be explored for this purpose.
Accordingly, we may think of using OFDM (orthogonal frequency division
multiplexing) packets to gain more information about the channel state.

Distinguish the type of motions: Although we can detect the movements in
a given space, we are not yet able to distinguish the type of these movements,
whether they belong to humans or pets. By examining how different bodies
respond to the emitted signals, we may be able to identify the type of moving
objects.

Non invasive monitoring: Ultrasounds can offer the possibility of non invasive
monitoring of vital signs. For example, by combining results from the motion
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detection and changing reflection patterns, one may infer the breath rate of a
person, without requiring any physical contact with them.

Finally, we truly believe that using ultrasonic signals and efficiently processing
them can extend the senses of smart systems and devices, and that the advances in
internet-of-things and ubiquitous computing represent the fertile ground for this
technology to flourish and become more and more of use.
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