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Postoperative rehabilitation is led by physiotherapists and is a vital program that re-

establishes joint motion and strengthens the muscles around the joint after an orthopedic
surgery. Modern smart devices have a®ected every aspect of human life. Newly developed

technologies have disrupted the way various industries operate, including the healthcare one.

Extensive research has been carried out on how smartphone inertial sensors can be used for

activity recognition. However, there are very few studies on systems that monitor patients
and detect di®erent gait patterns in order to assist the work of physiotherapists during the

said rehabilitation phase, even outside the time-limited physiotherapy sessions. In this paper,

we are presenting a gait recognition system that was developed to detect di®erent gait
patterns. The proposed system was trained, tested and validated with data of people who

have undergone lower body orthopedic surgery, recorded by Hirslanden Clinique La Colline,

an orthopedic clinic in Geneva, Switzerland. Nine di®erent gait classes were labeled by

professional physiotherapists. After extracting both time and frequency domain features
from the time series data, several machine learning models were tested including a fully

connected neural network. Raw time series data were also fed into a convolutional neural

network.
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1. Introduction and Related Work

The role of physiotherapy following an orthopedic surgery is to assist the patient

return to normal activities of daily living. Doctors and physiotherapists help the

patient achieve this by prescribing suitable exercises that will establish the reha-

bilitation goals. There is a signi¯cant body of evidence coming from systematic

reviews and controlled trials that dictate the best practices in physiotherapy [1].

Proper evaluation guarantees the e®ectiveness of physiotherapy [2] for a wide variety

of medical conditions, including recovering after a lower body orthopedic operation.

Gait refers to a person's manner of walking and is in°uenced by age, personality,

mood and sociocultural factors [3]. Several reasons including a lower body operation

may lead to either temporary or permanent gait disorders. Any such disorder is

typically thoroughly investigated by the physiotherapist who then suggests a speci¯c

treatment to the patient. There are various tools at the disposal of the phy-

siotherapists, and many robotic solutions are being created in order to help people

walk or to act as an aid during a physiotherapy session [4]. These robot-assisted gait

solutions may be used as an excellent companion to conventional therapy and

improve the independence and the gait capacity of the patient [5].

Activity recognition (AR) has emerged as a key research domain in computer

science. The approaches for AR can be roughly divided into two categories: the

camera-based ones [6], where gestures and activities are inferred from still images or

videos using computer vision techniques, and the inertial sensor-based ones, where

one or more body-worn sensors are used [7]. Any AR system includes many variables

such as the de¯nition of the classes of interest, the experiment design, the sensors, the

data handling procedure, and the performance evaluation. These variable compo-

nents can be implemented in a variety of ways [8] having an impact on the overall

performance of the system.

The increased availability of inertial sensors due to the omnipresence of smart-

phones and particularly smartwatches has enabled AR to become an essential

context-awareness tool for mobile and ubiquitous computing. Sensors in modern

consumer electronics provide reasonably accurate recordings when compared to re-

search monitors [9]. This is why these devices prove to have clinical utility, although

they continue to be underutilized in the healthcare industry [10].

Besides recognizing daily activities, inertial sensors have been used in gait pattern

analysis. In most studies accelerometers are attached to the legs or feet, but gait

patterns can be also extracted from data recorded from sensors attached to the upper

body [11]. Common smartphone accelerometers have been used to detect di®erent

gait events [12]. In a similar manner, smartwatches that contain inertial sensors can

be used for gait recognition. Unlike smartphones, smartwatches tend to be worn in

the same location and the same orientation and can be even used for gait-based

biometrics based on the accelerometer and the gyroscope data [13].

Various recovery programs have been developed to improve the recovery time

after surgery [14]. Wireless monitoring of mobility after a major operation has the
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potential of improving services provided by healthcare professionals [15]. With the

proposed system, we incorporate smartwatches into the routine care of patients who

have undergone a lower body operation in order to monitor their gait patterns. Doing

so will enhance the patient–physiotherapist relationship, respect the patients' au-

tonomy regarding their healthcare and provide a remote monitoring solution to the

physiotherapist in charge.

The rest of the paper is organized as follows. In Sec. 2, we discuss the system that

we have developed. We present the data acquisition tools and the data preprocessing

step. In Sec. 3, we present the experiment that we have conducted and we evaluate

the performance of the overall system by training machine learning models and

neural networks. Finally, we conclude our work in Sec. 4.

2. System Overview

2.1. Gait classi¯cation

The physiotherapists of Hirslanden Clinique La Colline, an orthopedic clinic in

Geneva, Switzerland, compiled a list of the gait patterns of interest to our system.

The patterns include walking with crutches with various levels of weight-bearing,

walking with di®erent frames, limping and walking normally. Table 1 includes the

list of all the 9 gait patterns that our system should detect.

2.2. Work°ow

The developed system comprises three components, the smartwatch, the smart-

phone, and the web server. Figure 1 presents the °ow of data in the proposed system.

The system is meant to be used during the rehabilitation phase, that is the time that

the patient is undergoing physiotherapy after a lower body surgery. During phys-

iotherapy sessions in the clinic, any patient is walking while wearing a smartwatch

that tracks wrist movements. At the same time, the physiotherapist is labeling on a

smartphone any physiotherapy session with the observed gait pattern of the patient.

All these data from multiple patients and physiotherapy sessions are uploaded to the

web server, where a user-independent machine learning model is trained.

Table 1. Classi¯cation of gait patterns for

recognition.

Category Class

No aid Limping

Walking

Crutches Unladen
Rolled out

Laden 10 kg

Laden 20 kg
According to pain

Frame Without wheels

With wheels
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During everyday life, through the rehabilitation phase, the patient is wearing a

given smartwatch. Throughout the day, the smartwatch is passively recording gait

sessions of unknown gait patterns when the patient is moving. These recordings are

uploaded from the smartwatch to the web server. Using the trained machine learning

model, those new recordings are classi¯ed into the prede¯ned gait patterns. Using the

web server, the physiotherapists can monitor how each patient's gait pattern is

evolving, even between physiotherapy sessions.

2.3. System implementation

Wrist movements of the patients are recorded using the three-axis accelerometer and

the three-axis gyroscope of an Android smartwatch running Wear OS. The accel-

erometer sensor provides a three-dimensional vector representing acceleration along

each device axis, excluding gravity. The gyroscope sensor measures the angular

velocity of each axis of the device. Recordings can be made either on-demand during

a physiotherapy session when the physiotherapist can provide the ground truth with

the observed gait pattern, or by transparently monitoring the movement of the user

throughout the day and saving only sessions where prolonged movement or steps are

identi¯ed.

At the end of every on-demand recording, sensor data are sent from the smart-

watch to the connected Android smartphone. The smartphone is used by phy-

siotherapists to label each recording during a physiotherapy session with the identi¯ed

gait pattern. The recordings that are produced during the monitoring phase of the

system during the whole rehabilitation program, naturally have no ground truth label

and are directly sent from the patient's smartwatch to the web server.

Every recording is saved to the web server. On every upload of a new recording,

the web server is extracting the features that will be later used for machine learning.

Training of the selected user-independent machine learning classi¯er is run period-

ically when enough new labeled recordings from multiple users have been obtained.

On the other hand, the server exposes an API with which the unknown gait patterns

of the nonlabeled recordings can be predicted. The physiotherapist can query the

Fig. 1. Summary of the implementation of the gait recognition system.
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server in order to monitor what is the dominant detected gait pattern of a speci¯c

time and how it evolves during the rehabilitation program.

2.4. Data preprocessing

The accelerometer and the gyroscope sensors of the smartwatch that we have used

did not provide a constant sampling rate throughout the recordings. This is why the

raw sensor data were resampled with a constant sampling frequency of 60Hz. This

frequency was selected for this study as it is higher than the 20Hz commonly re-

quired to assess daily living [16] and also lower than what typical o®-the-shelf inertial

measurement unit components can achieve. Features forming the feature vector used

for machine learning were derived from these time series data and these were the raw

data fed to the convolutional neural network.

3. Experiment and Evaluation

Physiotherapists of the Hirslanden Clinique La Colline recorded wrist movements of

patients walking soon after they have undergone a lower body orthopedic surgery.

During all recordings, the physiotherapist was in close proximity to the patient, in

order to guarantee the correct ground truth annotation and the cleanliness of the

data. In total, 48 recordings from 33 di®erent patients were made over a period of

4 months. The recordings amount to a total time of 155min of labeled gait patterns.

3.1. Feature engineering

Both time and frequency domain features were computed for both sensors over a

selected time window. The time domain features include the mean, the standard

deviation, the median, the skewness, the kurtosis, the 25th and the 75th percentile,

and the squared sum of the components under the 25th and the 75th percentile.

Those were derived from the resultant vector computed by the three, x, y and z,

components that each sensor provides.

For the frequency domain features, a Fast Fourier Transform (FFT) was per-

formed after normalization on the windows, and the features were computed per axis.

Those features include the maximum frequency, the sum of heights of frequency

components below 5Hz and the number of peaks in the spectrum below 5Hz, as it

was noticed that most of the signal strength lied between 0–5Hz. The selection of the

features was based on a feature importance analysis presented in a previous work of

ours [8]. All the features extracted for this study are summarized in Table 2.

3.2. Machine learning

The classi¯ers that we have evaluated are Light Gradient Boosting Machine

(LGBM) [17], Logistic Regression (LR), Support Vector Machines (SVM), Random

Forest (RF), Decision Tree (DT), Extra Trees (ET) and k-Nearest Neighbors (kNN).

Each recording is segmented into multiple time windows. The features were
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computed over a time window of ¯ve seconds with a step size of one second, so there

was a four-second overlap between consecutive windows. This value for the time

window was identi¯ed in a previous work of ours [8] as a good candidate since it is

large enough to contain useful information regarding the activity and small enough

to increase the number of the produced segments during segmentation. The seg-

mentation of any given recording is depicted in Fig. 2. The constructed dataset

contained in total 9089 observations.

Unfortunately, the acquired dataset was imbalanced. The reasons were either lack

of availability of patients with a gait pattern belonging to one of the minority classes

Fig. 2. An example of the segmentation of a data recording.

Table 2. Extracted features per sensor used in machine learning.

Domain Features No of features

Time (resultant vector) Mean 9

Standard deviation
Median

Skewness

Kurtosis

25th percentile
75th percentile

Sq. sum of < 25th perc.

Sq. sum of < 75th perc.

Frequency (per axis) Maximum frequency 9

Sum of 5Hz

Number of peaks
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or no consent from the patient. Figure 3 presents the observation count of the

available dataset. To cope with the problem of the imbalanced dataset and to op-

timize the performance of the classi¯cation algorithms, the random minority over-

sampling with replacement method was used [18].

We have used Matlab for feature extraction and Python and the Scikit-learn

module [19] for machine learning. To evaluate the performance of our system, we

split the available dataset into a training set (80%) and a test set (20%) in a strati¯ed

fashion. The minority classes of the training set were randomly over-sampled with

replacement. The 10-fold cross-validation scheme was used on the training set to

train the model, the performance of which was evaluated on the test set. Figure 4

Fig. 3. Observation count of the available dataset of all gait pattern classes.

Fig. 4. Box plot of multiple classi¯ers trained for gait recognition.
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presents the box plot for all trained classi¯ers. Di®erent classi¯ers naturally perform

di®erently. This is due to the nature of the problem, the characteristics of the

dataset and the capacity of each classi¯er in terms of the variety of functions it can

¯t. Table 3 presents the confusion matrix for the LGBM classi¯er, the best per-

forming classi¯er and Table 4 presents the model's performance metrics.

We have achieved an accuracy of 94.9% with the LGBM classi¯er on the previ-

ously unseen test set. From the confusion matrix, it is worth noting that the

misclassi¯ed observations belonging to one of the crutches classes were most of the

times predicted to belong to another crutches class. Although misclassi¯ed per se,

these kinds of observations may still provide physiotherapists useful information

regarding the gait patterns of the patients.

3.3. Fully connected neural network

The same dataset that was constructed earlier was fed into a fully connected neural

network. To evaluate the performance of our system, we split again the available

dataset into a training set (80%) and a test set (20%) and the 10-fold cross-validation

scheme was used on the training set to ¯ne-tune the model. The network consists of

two hidden layers, the ¯rst with 72 neurons and the second with 36 ones, both

applying the Recti¯ed Linear Unit (ReLU) activation function. We have used the

Table 3. Confusion matrix of the LGBM classi¯er.

Predicted class

True class L W CU CRU CL 10 kg CL 20 kg CP FN FW

Limping (L) 155 0 0 0 0 0 5 0 0

Walking (W) 3 66 0 0 0 0 8 0 0

Crutches unladen (CU) 0 0 36 0 0 1 0 0 0
Crutches rolled out (CRU) 0 0 0 43 1 2 5 0 0

Crutches laden 10 kg (CL 10 kg) 0 0 0 0 81 3 14 0 0

Crutches laden 20 kg (CL 20 kg) 0 0 0 0 0 377 23 0 0

Crutches pain (CP) 0 2 0 0 1 19 899 0 0
Frame without wheels (FN) 0 0 0 0 0 0 6 44 0

Frame with wheels (FW) 0 0 0 0 0 0 0 0 24

Table 4. Performance metrics of the LGBM classi¯er.

True class Precision Recall F1-score

Limping (L) 0.981 0.969 0.975

Walking (W) 0.971 0.857 0.91

Crutches unladen (CU) 1 0.973 0.986

Crutches rolled out (CRU) 1 0.843 0.915
Crutches laden 10 kg (CL 10 kg) 0.976 0.827 0.895

Crutches laden 20 kg (CL 20 kg) 0.938 0.943 0.94

Crutches pain (CP) 0.937 0.976 0.956
Frame without wheels (FN) 1 0.88 0.936

Frame with wheels (FW) 1 1 1
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Adam optimization algorithm [20] with its default values and since we have a

problem of multiclass classi¯cation, we used the categorical cross-entropy as the

loss function. Last but not least, the batch size was set to ten. We have used Python

and the Keras API for the neural networks.

We achieved a performance of 90.9% on the test set. We notice that using the

same dataset, the fully connected neural network that we trained performs worse

than the LGBM classi¯er of the previous test.

3.4. Convolutional neural networks

For the models we have used so far, we manually engineered features from the time

series data based on a ¯xed time window. However, there are deep learning methods

such as recurrent neural networks and one-dimensional convolutional neural net-

works, that provide competent results with minimal or no feature engineering e®orts.

We are exploring how one-dimensional convolutional neural networks perform for

our problem of gait pattern recognition. The data that we will feed the neural

networks with are the raw time-series ones, as these were produced after the uni-

versal resampling step with the sampling frequency of 60Hz. We have used the same

time window of ¯ve seconds with a step size of one second. So for every time window,

we end up with 300 values per axis per sensor. We were using two sensors and each

one of those had three axes, so we end up with six features in total. So each row of

data contains 1800 elements. This is 50 times more than the features we manually

engineered for the previous tests, so it is very likely that there are some redundant

data.

The network that we have built consists of two one-dimensional convolutional

neural network layers, both with a standard con¯guration of 64 feature maps and a

kernel size of three. We have added a dropout layer [21] with a value of 0.2 for

regularization and to prevent over¯tting by slowing down the learning process. Then

we have added a pooling layer that reduces the learned features to half of their size in

order to avoid over¯tting and accelerate the training procedure. After the convolu-

tional network, the learned features are °attened and passed through a fully con-

nected layer of size 100 before the output layer. Last but not least, we are using again

the Adam optimizer to optimize the network and the categorical cross-entropy loss

function for our multiclass classi¯cation problem.

Due to the stochastic nature of neural networks, we repeat the evaluation of

the model 20 times and then summarize the performance of the model across those

runs. We are training several one-dimensional convolutional neural networks and we

discuss how important parameter tuning is when creating such models.

3.5. Standardization

One possible transformation that we can apply on the available dataset is to

standardize the input before training the model. By standardizing a variable,

its distribution is shifted so that it has zero mean and a standard deviation of one.
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We evaluated our model both with and without standardization and the results are

presented in Fig. 5.

We can notice that by standardizing our dataset we can easily lift our predictive

performance. Without standardization the accuracy was 87.3%, while with stan-

dardization that accuracy increased to 89.3%. For this reason, for the next tests we

are standardizing the input before training the neural networks. The performance of

the convolutional network at this point did not surpass the fully connected one we

tested before, since the former did not have the learning capacity to do so as the

latter had with the already engineered features. With the next tests we are tuning the

hyperparameters of the convolutional network in order to achieve a higher accuracy.

3.6. Number of ¯lters

In this test we are exploring how modifying an important hyperparameter of a

convolutional neural network such as the number of ¯lters, has an impact on the

overall predictive performance of the model. Speci¯cally, we tested the following

values for the number of ¯lters: 8, 16, 32, 64, 128 and 256. Figure 6 presents the

predictive accuracies for the di®erent number of ¯lter maps.

The bigger the number of ¯lters we use, the better the accuracy gets. We have

managed to achieve an accuracy of up to 92% using 128 ¯lters. However, the more

¯lters we use, the more computationally demanding ¯tting the model gets.

3.7. Size of kernel

Another important hyperparameter of the one-dimensional convolutional neural

network is the size of the kernel. This basically controls the number of time steps that

are taken into account from the input data on each read. For our test, we used the

following values for the kernel size: 2, 3, 5, 7 and 11. Figure 7 presents the predictive

accuracies for the di®erent values of the kernel size that were tested.

Fig. 5. One-dimensional convolutional neural networks with and without standardization.
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We achieve the best accuracy for a kernel size of 11 (94.3%). However, the kernel

size of 7 provides a better balance between low variance and good performance (94%)

and might be a better choice for our case.

At this point, we can notice that even without any feature engineering, we can

achieve very good results with a one-dimensional convolutional neural network by

optimizing its hyperparameters. Tradeo®s however exist. It is computationally more

demanding to train a neural network compared to a gradient boosting model.

However, in the long run when new labeled data might become available, having

an already trained neural network to retrain might be easier than having another

machine learning model that will need retraining from scratch.

Fig. 6. One-dimensional convolutional neural networks with di®erent number of ¯lter maps.

Fig. 7. One-dimensional convolutional neural networks with di®erent kernel sizes.
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4. Conclusion

This paper presented a machine learning-based, gait recognition system that assists

physiotherapists with the postoperative rehabilitation phase of patients who have

undergone a lower body operation. The architecture of the system comprising a

smartwatch, a smartphone, and a web server was presented. The performance of

the system was validated with labeled data recorded by physiotherapists of the

Hirslanden Clinique La Colline, an orthopedic clinic in Geneva, Switzerland. Gait

patterns of patients were recorded soon after they have undergone various types of

lower body operations. After engineering time and frequency domain parameters,

several machine learning models and a fully connected neural network were tested.

The predicted performance of the system reached an accuracy of 94.9% with the best

performing classi¯er among nine di®erent gait classes. One-dimensional convolu-

tional networks were also trained with the raw time-series data of the sensors. After

the hyperparameter tuning, a predictive performance of 94.3% was achieved.

The innovation of the proposed system lies in the fact that it enables physiothera-

pists to monitor the evolution of the gait pattern of a patient under rehabilitation,

throughout the day and not only during the de¯ned and time-limited physiotherapy

sessions.
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