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Abstract. The present paper aims to investigate the adoption of Neural
Networks for recommendation systems and to propose Deep Learning ar-
chitectures as advanced frameworks for designing Collaborative Filtering
engines. Recommendation systems are data-driven infrastructures which
are widely adopted to create effective and cutting-edge smart services,
allowing to personalize the value proposition and adapt it to changes and
variations in customers’ preferences. For this purpose we will introduce
a Collaborative Filtering algorithm based on the adoption of a ”deep”
Feed-Forward Network, inspired by a recent research on neural-based ser-
vice recommenders; given these assumptions, we will confirm the suit-
ability of Feed-Forward Neural Networks as effective recommendation
algorithms, laying the foundations for further studies in neural-based
recommendation science.
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1 Introduction

This paper will investigate the suitability of a Deep-Learning-based approach
for designing advanced collaborative recommendation systems. Recommendation
engines can be regarded as noticeable examples of ”smart services” [1] enablers,
data-driven architectures designed to facilitate the users’ decision-making pro-
cess, in accordance with a customer-centric perspective [2].
The role of data science and advanced analytics in the smart service design
process in definitely prominent [3] [4], providing techniques, instruments and
sophisticated algorithmic tools for mapping and describing properly a dynamic
world made up by dynamic customers [3]. Given these assumptions, the role of
recommendation systems as smart and personalized architectures that make use
of previously collected and labeled customer data to provide them with effec-
tive service suggestions is surely relevant, and the adoption of a ”Neural-based”
approach can lead to outstanding performances also if compared with more ”tra-
ditional” methodologies [5].



2 P. De Rosa et al.

2 Theoretical Framework

In this section we will provide the theoretical background of our research study:
in particular, in Sect. 2.1 we will describe Recommendation Systems and the
Collaborative Fltering approach, in Sect. 2.2 we will focus on Neural Networks
and fundamentals of Deep Learning and in Sect. 2.3 we will provide a brief
overview of the recent advancements in the scientific literature.

2.1 Recommendation Engines and Collaborative Filtering

In the introductory chapter, we provided a brief overview of the impact of data
science and big data analytics in shaping a new era for service science.
One noticeable example is represented by ”recommendation systems”, powerful
algorithmic engines designed in order to simplify the customers’ decision-making
process providing them with relevant and effective service suggestions; several
different approaches to recommendation emerged, like Collaborative Filtering
[10], Content-based Filtering [10] and Hybrid architectures [6] [8] [9] [10] [11].
Among those paradigms, is worth focusing on Collaborative Filtering, an ap-
proach to recommendation based on the convergence between the preferences
of different users, that allows to ”extend” the customers’ purchase intentions
to unknown and/or unexplored service categories [7]. However, the adoption of
a Collaborative perspective when designing a service recommendation engine
could lead to some disadvantages, like the ”cold-start problem” (common for
new, unrated goods), the ”sparse” nature of user ratings and the computational
complexity.
When building an effective Collaborative engine, in literature is widely adopted
the ”user/rating” matrix, sparse by definition, in which the customers’ prefer-
ences are represented by a m×n structure, where m are the overall service users
and n the total number of services previously rated by the clients [10].

R =


r11 r12 r13 . . . r1n
r21 r22 r23 . . . r2n
...

...
... . . .

...
rm1 rm2 rm3 . . . rmn


The user/rating matrix allows to create effective algorithms capable of generat-
ing predictions about the customer ratings, that can be used to define the basis
of subsequential recommendations.
Collaborative Filtering techniques are generally sub-divided in two different
”families”: Neighborhood-based and Model-based [10].
The Neighborhood-based algorithms originate from the ”nearest neighbors” con-
cept: a subset consisting of the k most similar users to a specific customer, whose
ratings are defined as a weighted combination of the reviews expressed by his
”nearest neighbors” in the past. The Neighborhood-based models are widely
adopted in practical applications for their characteristic computational efficiency,
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for the proven stability when dealing with variations in the data structure and
for the capability to arouse the customers’ interest in new services (serendipity)
[12].
The ”Model-based” recommenders, on the other hand, make use of statistical
techniques to provide an estimation of user ratings [10]. Among these, it is worth
mentioning the ”Latent Factors Models”, like the ”Singular Value Decomposi-
tion” (SVD), based on the assumption that the similarity between users is deter-
mined by the presence of latent and hidden structures in the data, and Artificial
Neural Networks, sophisticated machine learning algorithms capable under cer-
tain conditions of overcoming in effectiveness more ”traditional” approaches to
recommendation [5].

2.2 Neural Networks and Deep Learning

In the previous section, we affirmed that model-based techniques constitute a
significant advance in the development of cutting-edge Collaborative engines;
more specifically, a new milestone in this field could be represented by Artificial
Neural Networks, machine learning architectures whose suitability for recom-
mendation systems has already been investigated in recent studies [5] .
A first ”prototype” of Neural Network was theorized by the psychologist Frank
Rosenblatt in 1958, and was named ”Perceptron” [13] [14]: the original Percep-
tron was a classification algorithm that, starting from a number n of inputs,
x1, x2, ..., xn, each one assigned with a weight ω1, ω2, ..., ωn, produced a binary
outcome as explained in the following equation:

Output =

{
0, if

∑
n xnωn ≤ t

1, if
∑

n xnωn > t
(1)

Where t is an exogenous treshold value determined by the researcher in accor-
dance with the purposes of the study; in practical applications, the threshold
usually appears in the other side of the inequality, ”replaced” by what’s known
as the Perceptron’s bias b, defined as −t [14]:

Output =

{
0, if

∑
n xnωn + b ≤ 0

1, if
∑

n xnωn + b > 0
(2)

The second equation represents the activation conditions of the Perceptron,
and in literature is generally defined the ”activation function” of the Neural
Network (more specifically, this expression is also known as the ”Heaviside step
function”) [14].
The leftmost, first layer in the network is also called ”input layer”, while the final
activation layer contains the output neuron; in the past years, several enhance-
ments were made to the original Perceptron’s architecture, introducing middle
layers between the inputs and the final activation, also known as ”hidden layers”.
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Fig. 1: A graphical representation of the Perceptron [14].

A Neural Network consisting of one or multiple hidden layers between the first
and the final neurons is also called ”Multi-layer Perceptron” or ”Feed-Forward
Neural Network”, if the output from each layer is used as input to the next one,
and information is never fed back [14].

Fig. 2: A graphical representation of the Multi-Layer Perceptron [14].

The optimal parameters of the Network (weights and biases) can be determined
as a result of an algorithmic process, defining a non-negative ”cost function”
C(ω, b) and minimizing it by finding a combination of weights and biases that
generates the lowest achievable model loss [14]. A well-known example of mini-
mization algorithm for Neural Networks is represented by the ”gradient descent”
technique and its most commonly adopted variant, the ”stochastic gradient de-
scent”.
In addiction to the basic Multi-Layer Perceptron architecture, other several neu-
ral structures emerged in the scientific literature, among which is worth men-
tioning Convolutional Neural Networks and Recurrent Neural Networks [14].

Convolutional Neural Networks Convolutional Neural Networks (CNNs)
are complex neural architectures specially suitable for image recognition and
computer vision applications, in which the hidden units are not ”fully connected”
to each input neuron, but connections are built only in small localized regions
(called ”local receptive fields”) [14]; for each layer, several ”feature maps” are
created through a mathematical convolution, building a ”convolutional layer”
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which can detect n different characteristics of the input data.
The convolutional layers are usually followed by structures known as ”pooling
layers”, whose aim is to is simplify the information in the previous output apply-
ing several transformations like max-pooling or L2 pooling [14]; lastly, for the
final activation layer (which is ”fully-connected”), in image recognition tasks
are usually adopted functions like the Sigmoid (for binary classifications) or the
Softmax (for multiple classifications).

Fig. 3: A graphical representation of a Convolutional Neural Network [14].

Recurrent Neural Networks Recurrent, or ”Feed-back” Neural Networks
(RNNs) are Deep Learning architectures in which the behaviour of each neuron
is not only determined by the activation in the previous hidden layer, but also
by the earlier states [14].
More specifically, the activation function for each hidden layer of a Recurrent
Neural Network can be represented by the following expression [15]:

h(t) = f(h(t−1), x(t), θ) (3)

In which the hidden layer a the time t, h(t), is function of the previous state,
h(t−1), of the current input x(t) and of the activation function adopted, θ.

Fig. 4: A graphical representation of a Recurrent Neural Network [15].

The training process of Recurrent Neural Networks is often characterized
by the ”unstable gradient problem”: the gradient of the adopted cost function



6 P. De Rosa et al.

tends to get smaller or bigger as it is propagated back through layers, resulting
in a final ”vanishing” or ”explosion” and making RNNs unable to model ”long
term dependencies” between data [14]. For this purpose, in practical applications
are commonly adopted other complex architectures known as ”gated RNNs”:
Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), models
specifically designed to be capable of accumulating information over a long time
duration [15].

2.3 Neural Collaborative Filtering: a Literature Overview

The adoption of Neural Networks for recommendation tasks is widely attested
in the scientific literature: among the most recent works in this field is certainly
worth mentioning the contribution of Vassiliou et al. [16], that introduced an hy-
brid framework for recognizing implicit patterns between user profiles and items
in order to provide personalized suggestions; moreover, the survey conducted by
Zhang et al. [17] provided a taxonomy of neural-based recommendation models
and a comprehensive overview of both the current trends and the new perspec-
tives of this scientific field.
Lastly, is worth to cite the research from Bobadilla et al. [18], that provided an
innovative deep-learning based framework introducing the ”reliability” concept
to improve the model’s predictive capability and the quality of recommendations,
and the work that inspired the present study, ”Collaborative Recommendations
with Deep Feed-Forward Networks” [5], that analyzed the better performances of
neural-based recommenders in comparison with more ”traditional” approaches
like k-Nearest Neighbors and Singular Value Decomposition.

3 Research Study

The present section will discuss the results of our research, analyzing in depth the
effectiveness of a Neural-based Collaborative Filtering algorithm: more specifi-
cally, in Sect. 3.1 we will provide an overview of the ”Movielens 100K” dataset
used for the training process, in Sect. 3.2 we will discuss in details the architec-
ture of the Neural Network and in Sect. 3.3 we will describe the experimental
results and the findings of our study.

3.1 Preliminaries and Data Structure

We based our study on the findings of the paper [5], aiming to extend its scope
and investigate further the suitability of Feed-Forward Neural Networks for Col-
laborative Filtering by analyzing the performance of a ”deeper” neural recom-
mender.
In order to guarantee a methodological coherence with the previous study, we
trained our model on the ”Movielens 100K” dataset, whose main characteristics
are listed below [19]:

– 100.000 ratings (from 1 to 5), collected from 943 users on 1682 movies.
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– Four variables of interest (the IDs for users and movies, ratings and times-
tamps).

This dataset, which constitutes a stable benchmark in recommendation science,
was collected through the MovieLens web site between September 1997 and April
1998 and subsequently cleaned up, removing all users with less than 20 ratings
or devoid of complete demographic information.

User ID Movie ID Rating Timestamp

196 242 3 881250949

186 302 3 891717742

22 377 1 878887116

244 51 2 880606923

166 346 1 886397596

Table 1: Summary of the first five elements in the training dataset, randomly
ordered.

3.2 Model Description and Training Process

The present paragraph aims to describe in depth the structure of our Neural
Collaborative Filtering algorithm: more specifically, in the following sub-sections
will be provided further indications on the model architecture, in addiction to
a detailed explanation of the optimization techniques adopted for the training
process.

Model Architecture The first step of our research was to turn all Movies and
Users IDs into categoricals, in order to create Entity Embedding tensors of shape
(batch size, 1, 256). The adoption of an Embedding Layer allows not only to
reduce the memory usage if compared with one-hot encoding, but also to reveal
the intrinsic properties of the input variables [20].
Directly after the Embedding Layers, we created two Flatten Layers in order
to reduce the dimensionality of the previous output, making it suitable for the
subsequent computations.
The previously generated Embedding Layers were subsequently concatenated
into one Merged Layer of shape (batch size, 512), before the first ReLu (Recti-
fied Linear) Activation.
Moreover, we decided to use a ReLu Activation also for the final layer of the
Network, since rating predictions were bounded to non-negative values between
1 and 5.
In addiction to simple hidden Dense activations, we added to our Network sev-
eral Dropout Layers: those architectures were specifically developed in order to
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address overfitting by randomly dropping units from the Neural Network during
the training process [21].
For our research purposes, we decided to apply Dropouts (with a ratio of 0.5
unities dropped) directly after each Dense/ReLu Activation Layer in the Net-
work.

Fig. 5: Architecture of the Feed-Forward Neural Network



Service Recommendations with Deep Learning 9

Optimization and Training Once defined the model structure, we initialized
the training process by selecting the most appropriate cost function and a proper
optimization algorithm.
Since the rating prediction was a regression task, we decided to use the MSE
(Mean-Squared Error) function to provide an estimation of the model loss; more-
over, for the model optimization we used the Adam (Adaptive Moment Estima-
tion) algorithm [22], setting the learning rate to 0.001.
Lastly, we opted to train our model on the 80% of overall data, using the re-
maining 20% for validation.

3.3 Experimental Results and Research Findings

The study outcomes highlighted the noticeable performance of our Neural rec-
ommender, capable of providing accurate rating predictions also if compared to
the research that inspired the present paper [5]. After an iterative process, we
decided to train our model for 10 epochs with a batch size of 64, since it was the
optimal training duration in order to prevent the model from overfitting.

Epoch Training Loss Validation Loss

1 1.7421 0.9738

2 1.2687 0.9237

3 1.1357 0.9308

4 1.0462 0.9645

5 0.9845 0.9219

6 0.9390 0.9215

7 0.8995 0.8887

8 0.8761 0.8923

9 0.8550 0.9014

10 0.8279 0.8822

Table 2: Summary of the research findings sorted by the training epoch.

As it can be observed in the table, in fact, the Feed-Forward Neural Network
registered in the last training epoch a MSE of 0.8822 (RMSE = 0.9392), an
improvement in terms of predictive ability respect to the neural recommender
proposed in [5]. Those results confirm the primary role of Neural Networks for
the design of successful and cutting-edge recommendation algorithms, with a
proven stability and a noticeable accuracy in rating predictions.
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Fig. 6: Loss function trend per epoch of training.

4 Conclusions

The results of this study confirmed the suitability of Feed-Forward Neural Net-
works for designing advanced Collaborative recommenders: in fact, adopting a
”deeper” and more complex model architecture, it was possible to consolidate
and even improve the outcomes, in terms of predictive ability, of the study that
inspired our research [5].
These assumptions lead us to suppose that the adoption of Neural Networks
for service recommendations should be extended also to a broader range of tech-
niques, like sequential ”Feed-Back” architectures as the ”Long-Short Term Mem-
ories” (LSTM) and the ”Gated Recurrent Units (GRUs).
The service consumer behaviour can also be analyzed as a dynamic process, in-
stead of a static sequence of unrelated actions over a certain time frame [23]: in
accordance with this statement, we can assume that the adoption of a sequence-
based framework, like a Recurrent Neural Network, could lead to relevant per-
formances and even lay the foundations for significant advances in service rec-
ommendation design [24] [25].
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