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Abstract—Automatic health monitoring and activity recog-
nition systems provide specific information for caregivers and
health professionals to prevent injury or disease. With the
improvement of sensor technologies, wireless communication and
machine learning, systems can now be aware of changes in the
user’s state and its environment in order to provide activity-
aware automatic health predictions and information. However,
these systems face the challenge to recognize specific patterns
and activities in a large and quickly evolving database of sensor
data. In this paper, an innovative approach to classify timeseries
in a large dynamical space of classes is evaluated. The algorithm
is based on the Conceptor Framework (CF) and close to the
Reservoir Computing paradigm in machine learning. Compared
to traditional approaches for classification, Conceptors allow the
recognition of a large number of dynamical patterns incremen-
tally without interference with previous learning and can easily
adapt to new classes and users on the fly. For this empirical study,
we gathered a dataset of timeseries extracted from sensors placed
on horses during training sessions and evaluated various methods
on a task of predicting which horse is the source of a given
series. The dataset was gathered as a part of the HorseTrack1

project which aims to create a system able to automatically detect
injuries in horses. Our results show that incremental similarity-
based learning with Conceptors is able to solve effectively this
task with short training time while classical ESNs are not able
to perform better than the majority baseline.

Index Terms—Timeseries Classification, Horses, Sensor, Health
Systems, Reservoir Computing, Conceptors

I. INTRODUCTION

The advancement of sensor technology allowed sensors and
computing power to be condensed into small devices that can
be embedded and therefore used to track the health status

1Co-funded by Innosuisse

of people or animals. With the extensive use and availability
of fast and wireless communication systems such as mobile
phones and their ultra-fast connections, it has become possible
to track and analyze the activity of a huge amount of users
providing them with predictions and information adapted to
their immediate environment. The capacity of these activity-
aware systems has been further increased by the availability of
efficient machine learning algorithms and information retrieval
systems able to provide extremely accurate prediction and to
search in databases of patterns and categories.

However, these systems still face the challenge to retrieve,
compare and identify patterns in very large databases while
having the capacity to learn incrementally without interfering
with previous training and to adapt quickly to new users and
features. The difficulty of this challenge is further increased
with health monitoring systems where patterns are dynamical
and data composed of time-related samples. In the field of
machine learning and artificial neural networks, recurrent
models are well suited for this kind of data and are therefore
interesting to evaluate on timeseries classification tasks and
dynamical pattern recognition applied to automatic sensor-
based health systems.

RNNs are known to be very difficult to train due to the
vanishing gradient problem. To overcome this issue, a simple
RNN model known as Echo State Network (ESN) was intro-
duced in late 2000s [1] with similar methods in computational
neurosciences [2]. This set of models is known by the scientific
community as Reservoir Computing (RC). The idea behind
RC is simple and consists in randomly creating an RNN and
train only the output layer. Empirical data showed that it is
capable to achieve very good results in practice. As the training



process targets only one simple output layer, linear methods
can be used such as the common Ridge Regression (RR).
Therefore ESNs are quick and easy to train in comparison
to other recurrent models such as Long Short-Term Memory
(LSTM) [3] and Gated Recurrent Units (GRU) [4], both based
on the Stochastic Gradient Descent (SGD) algorithm.

The Conceptor Framework introduced in mid-2010s [5]
proposes to extend ESN-based recurrent models by defining
mathematically how a dynamical pattern occupies the hidden
space inside an ESN. This geometrical description of input
patterns is referred to as conceptors and can be used as a
neural filter to re-generate patterns or to identify new patterns.
Moreover, a set of logical operations can be defined on top
of conceptors in order to implement some basic logical and
conceptual reasoning such as pattern abstraction, similarity
comparison and incremental life-long learning.

However, only few studies in the existing literature com-
pared conceptor-based RNN and classical ESN models on
real word data. In this study, we then decided to compare
these two approaches on a timeseries classification task. The
dataset was extracted from Alogo Move Pro2 gathered on
horses during training sessions and consists of 187 samples
of 20-dimensional timeseries data such as 3-dimensional ac-
celerations and angles. In these experiments, models have to
identify which horse was the source of a timeseries in a closed
set of 34 possible candidates. For each model, we performed
a 10-fold cross validation and then searched for significant
differences between folds using two-sided statistical t-tests.

This paper is organized as follows. In the next section, we
discuss related work on timeseries classification, sensor data
and conceptors. In section 3, we present the dataset we used
and its main properties. In section 4, we present the ESN
model, the Conceptor Framework (CF) and the method we
used to classify timeseries. In section 5, we propose to apply
these two models to timeseries classification with various
parameters and we analyse these results. Finally, in section
6, we discuss the CF proposal and compare it to the ESN
model and other baselines such as Discrete Fourier Transform
(DFT) and Singular Value Decomposition (SVD), we also give
suggestions for future work.

II. RELATED WORK

In the scientific literature, a wide range of works illustrated
the possible applications of ESNs and reservoir computing
to classification problems. In [6], the authors investigated the
ability of ESNs to classify digits of the well-known MNIST
database, demonstrating that those models were capable of
achieving a good efficiency in terms of the loss generated,
also thanks to a suitable preprocessing of images.

In [7], the authors analyzed the suitability of ESN-based
Reservoir Computing models to classify text documents of
the Reuters C50 dataset based on authorship, proving that
ESNs can be able to achieve real state-of-the-art results on this
field, also if considered in comparison with more traditional

2https://alogo.io

models such as the Support Vector Machines (SVMs). In
natural language processing, ESN has also been applied to
cross-domain authorship attribution [8] and author profiling
on social network [9]. ESNs have also been applied to a large
variety of scientific fields such as robotics [10]–[13], temporal
series classification and forecasting [14]–[17]. Conceptor net-
works have been applied to timeseries prediction [18], image
classification [19] and natural language processing [20].

Furthermore, several other works in the related literature
described the possible use of sensors for classification tasks,
among which is certainly worth mentioning the one [21]
where inertial measurement units (IMUs) were attached to the
wrists, feet and pelvis of a specific set of climbers in order to
automatically detect and classify their climbing activities.

Lastly, other recent studies that emerged in the field
of sensor-based automatic classification were those from
Leutheuser et al. [22], where a hierarchical, multi-sensor based
classification system was developed for the distinction of a
large set of individual daily life activities (DLAs), Howcroft
et al. [23], where wearable sensors were adopted to classify
and analyze the risk of serious health concerns in the elders,
and Haladjian et al. [24], where a classification algorithm
was developed in order to detect soccer goalkeepers’ training
exercises using a wearable sensor attached to their gloves.

III. DATASET

The data has been collected with Alogo Move Pro sensors,
manufactured by Alogo Analysis, specifically designed to
record kinetic data and trajectories of horses during their
training sessions. This dataset was gathered as a part of the
HorseTrack project which aims to develop and implement a
set of applicable methods able to identify horses as well as to
detect and predict injuries.

Each session data, completed by one horse, has been
subsequently registered in the form of a timeseries with a
sampling rate of 10 milliseconds. However, for our training
purposes and in order to enhance the efficiency of the learning
process, we decided to downsample the original timeseries
with a resampling factor of 0.1, making sure that the resulting
information loss had no significant impact on the scope of our
study.

The original raw collected dataset is composed of 34
columns, 20 of which contain the data used to train the models.
More specifically, the sensor recorded the acceleration data
(ax, ay, az), the rotation angles around the 3D axes (roll, pitch
and yaw), the position vector in the ECEF coordinates system
(rx, ry, rz), the velocity vector (vx, vy, vz) and additional
information such as intensity, power, energy, speed, distance
and height.

The original data presented a split of the timeseries in
four gait types assumed by the horses during the respective
sessions which are standing, walk, canter and trot. However,
this split in the raw dataset was not taken into account for our
research purposes, and we trained our models on the entire
timeseries. For this reason, we decided to normalize each
session independently in order to prevent the training process



from being affected by the differences observed in values for
each gait.

Moreover, we observed that a relevant number of horses (40,
the 54%) completed only one session, determining possible
biases in data which could negatively impact on the effec-
tiveness of our models: given this assumption, we decided to
apply a further preprocessing of data in order to not consider
the horses with a single session generated. The preprocessed
dataset presented a total of 187 sessions (over an original
number of 227) completed by 34 horses with an average
timeseries length of 44,498 timesteps and a total length (for
all sessions) of 1,468,434.

The dataset is very biased as the two horses with the greatest
number of session have 14 sessions each and the next five
horses have 9 sessions. This bias adds a difficulty to the task
of classification and we added a majority classifier as the main
baseline. This baseline always predicts one horse which has
14 sessions and consequently reaches an accuracy of 7.4%.

IV. ECHO STATE NETWORKS AND THE CONCEPTOR
FRAMEWORK

A. Echo State Networks

Echo State Networks are composed of three parts. The
first is called reservoir and is a set of randomly connected
neurons with recurrent connections. The second is the input
layer which connect network’s inputs to the reservoir, also
generated randomly. The third is the output layer which is
the target of the training process. The state at time t of this
reservoir layer is defined by equation 1 and represented by a
non-linear activation vector h(t).

h(t) = (1− a)h(t− 1) + af(Ux(t) +Wh(t− 1) + b) (1)

with h(t) ∈ Rnh , where nh is the size of the reservoir
layer. Connections between inputs x(t) and the reservoir are
represented by the matrix U ∈ Rnh×nx . nx is the dimension
of the input temporal signal. The matrix W ∈ Rnh×nh

represents weights of reservoir’s internal connection. The null
state h(t) = 0 is usually used for initialisation. The leak rate
is an essential parameter that allows to adapt the network’s
dynamic to the one of the task at hand. Finally, b is the bias
vector to the reservoir’s units. Regarding the output of the
ESN, it is defined by,

ŷ(t) = g(Wouth(t)) (2)

Wout ∈ Rny×nh is the matrix of output connection weights
with ny as the number of outputs. Function g is usually the
identity function. The training process consists in solving a
system of linear equation in order to minimise the quadratic
error E(Y,WoutH) between network’s hidden states and the
target output to be learned. The output matrix Wout can
then be obtained using equation 1 to gather reservoir states
in a first step, and in a second step using linear methods
to WoutH = Y, where Y ∈ Rny×τ and H ∈ Rnh×τ are
respectively the matrices containing all the target outputs and

the corresponding reservoir states. Wout can be effectively
computed using the well-known Ridge Regression to minimise
the output weights and avoid overfitting.

W out = YXT (XXT + λI)−1 (3)

The parameter λ is the regularisation factor to fine tune for
the task at hand and I is the identity matrix I ∈ Rnh×nh .

To evaluate ESNs on our timeseries classification task, we
used a spectral radius equal to 0.95 and a ridge parameter λ
fine-tuned if the network seemed to be facing overfitting. To
evaluate the impact of the leak rate and the reservoir size we
evaluated the various ESN-based models with different values
for these parameters. For each evaluation, we initialized the
random number generator used for the generation of W with
the same seed in order to minimise additional factors.

B. The Conceptor Framework

The Conceptor Framework was proposed to establish a new
and fresh view on the neuro-symbolic integration problem
[5]. The scientific problem describes the challenge faced
by artificial intelligence practitioners to implement high-level
logical and conceptual reasoning based on neural network low-
level dynamic.

The main idea behind the Conceptor Framework is to
characterize the patterns of neural activation in a dynamical
network using neural filters called conceptors. When a neural
network such as ESNs, described with equation 1, is driven
by different input dynamical patterns xa(t),xb(t), ..., the
corresponding states of the reservoir ha,hb, ... are restricted
in different subspace Ra,Rb, ... of the reservoir state space.

These different subspaces correspond to the different input
patterns and are characteristics to them. For each of these
region, we can learn incrementally neural filters Ca,Cb, ...
called conceptors which can be used afterwards to re-generate
the corresponding pattern by restricting the neural dynamic of
an ESN to the subspace R. It can also be used to recognize a
pattern by quantifying how a new input pattern populate the
different subspaces learned by Ca,Cb, ... .

More formally, when an ESN is driven by an input pattern
x(t), the resulting timeseries of reservoir states h(1),h(2), ...
can be seen as a cloud of points in the nh-dimensional hidden
state space. Using principal component analysis (PCA), it is
possible characterize this cloud by an nh-dimensional ellip-
soid. Mathematically, the correlation matrix R of the reservoir
state points represents this geometrical interpretation. The
singular vectors v1, ...,vnh

and the singular values σ1, ..., σnh

of R represent respectively the directions and the lengths
of the different axes of the ellipsoid representation of input
patterns.

The next step to compute the conceptor is to normalized
these lengths σi to obtain

si =
σi

σi + α−2
(4)

with α ≥ 0 defined as the aperture parameter. As a result,
all si are lower or equal to 1 and the new ellipsoid is located
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Fig. 1: 10-Fold cross-validation accuracy of ESN and Conceptors models on the HorseTrack dataset with various leaky rates,
apertures and reservoir sizes.

inside the unit sphere. The resulting C ∈ Rnh×nh describes
this normalized ellipsoid and is called the conceptor matrix.
This matrix can be easily deduced from R using a linear
method such as,

C = R(R+ α−2I)−1 (5)

where I is the identity matrix I ∈ Rnh×nh . To understand
aperture, one can see a conceptor C as the matrix which
minimizes the loss function

λ(C) = ||h(t)−Ch(t)||2 + α−2||C||2 (6)

where ||C||2 is the sum of squared matrix weights. The
aperture regulate the balance between the two different costs.
The first cost (||h(t) − Ch(t)||2) seeks to transform the C
matrix into the identity map (I) while the the second push C
towards the zero map.

1) Conceptor Logic: Conceptors can be submitted to a set
of logical operation referred as Conceptor Logic. The two
conceptors C1 and C2 obtained from two different patterns
can be joined together by the OR operation defined as

C1 ∨C2 := (R1 +R2)(R1 +R2 + I)−1 (7)

where C1 = C(R1, 1) and C2 = C(R2, 1). The result
of this OR operation can be seen as the conceptor which
would have been obtained by merging the two data sources
which were used previously to compute C1 and C2. A NOT
operation is also defined as

¬C := R−1(R−1 + I)−1 (8)

Here, the conceptor ¬C can be seen as resulting from a data
source which inversion co-variance coefficients compared to
the data source used to compute C directly.

C. Timeseries classification

In this study, we seek to classify session gathered from
sensor and processed as timeseries under different classes
representing the horses on which they were collected. Here nc
is number of horses (and then of classes) and the evaluation
is done with the following procedure. First, we used a part of
the dataset as the training set which we used to compute nc
conceptors incrementally using the OR logical operation, or
to train an ESN. At the end of the training phase we have nc
conceptors. The other part of the dataset is used for evaluation
and for each session, we used either the ESN as a classifier,
an evidence-based measure or a similarity-based measure to
compute the predicted class. We repeat this procedure 10 times
to compute the 10-fold cross validation and the corresponding
p−value to find significant differences with various baselines.

1) Evidence-based classification: A first approach to clas-
sify timeseries used in our study is to defined the predicted
class of a new unseen session as the one with the highest evi-
dence which is the addition of positive and negative evidences.
The positive evidence for class i and a state point at time t is
defined as pev(t) = h(t)Cih(t)

T while the negative evidence
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is defined by nev(t) = h(t)C−
i h(t)

T . The conceptor C−
i is

the one obtained by,

C−
i = ¬

∨
{C1, ...,Ci−1,Ci+1, ...,Cnc

} (9)

The conceptor C−
i can be interpreted representing the fact

that the pattern under investigation does not belong to any of
classes than the class i. The combined evidence is defined by
ev(t) = pev(t) + nev(t). The predicted class is the one with
the highest average evidence over time.

2) Similarity-based classification: A second approach to
timeseries classification based on conceptor is by computing
the similarity between conceptors in a profile-based paradigm.

The main idea is to compute the similarity using matrices
Vi and Si

sim(C, α, i, j) =
‖(Si)1/2(Vi)TVj(Sj)1/2‖
‖diag(Si)‖‖diag(Sj)‖

(10)

Where Vi and Si result from the SVD of C(Ri, α).
For each sample, the predicted class in the one with the

highest similarity to the corresponding conceptor learned dur-
ing the training phase.

V. RESULTS

To evaluate ESNs and Conceptor networks and analyze
their behaviours, we looked first for the right parameters for
the leak rate (ESN) and the aperture (CF). The leak-rate
is very important for ESNs as it regulates the dynamics of
the network. It was also essential to determine the temporal
properties of timeseries used in this study.

A. Leak-rate

To analyse the dynamical behaviors of ESNs on the Horse-
Track dataset we evaluated the accuracy on the task of
timeseries classification with leak-rates varying between 1.0
and 10−7. For each leak-rate value, matrices U, W and b
were kept constant.

The left side of figure 1 shows the 10-fold cross-validation
accuracy for five ESNs with different reservoir sizes between
50 (nh = 50) and 400 units (nh = 400). The best results
(19.8%, 15.6% and 15.5%) are achieved respectively by the
ESNs with 300, 200 and 100 units and a leak-rate of 10−3,
10−3 and 10−2. The effect of this leak-rate value cannot be
observed for the ESN with 50 units. However, this lower
performance can be due to an insufficient number of units.

For the other ESNs, the accuracy quickly increases from
leak-rate 1.0 to 10−3 and slowly decreases after this value.
Regarding statistical significant, we observed after computing
the p-value, that only the best accuracy (19.8%) achieved an
accuracy significantly different (p = 3.79%) from the majority
classifier represented by the black doted line.

In view of these first results, it is clear that this task is
very difficult to solve for neural networks such as the ESNs.
It could be due to temporal and statistical properties of the
timeseries which could not contain the necessary information
to identify horses, or to a lack of performance on the ESN
side. We then wanted to compare these results to an improved
version of ESNs based on conceptor matrices.

B. Aperture

The aperture regulates the opening of the conceptor to
input data by modifying the lengths of the axis of the hyper-
ellipsoid. This geometrical object represents the pattern created
by the input data into the reservoir states space. It should be
optimized for this task and we there wanted to evaluate how
different conceptor networks behave under different aperture
values.

We then tested the 10-CV accuracy of seven different
conceptor network. Five based on the similarity metrics (CFS)
and three on the evidence function (CFE). For each model,
we evaluated their performance with aperture varying between
10−3 and 104. The right side of figure 1 shows the 10-fold
cross-validation accuracy of the evaluated models.

The highest accuracy is reached by similarity-based Con-
ceptor Network with 300 units with 31.1% accuracy. The
second and third best results are obtained respectively with
the same model with an aperture of 10 and also a similarity-
based network with 500 units with 28.4% and 25.7%.

For evidence-based models, the best accuracy is reached by
a model with 200 units and an aperture of 100 with 21.3%.
Most models achieve their highest accuracy with an aperture of
1.0. Similarity-based models achieved their best results with an
aperture of 1.0 while evidence-based models reached highest
accuracy with aperture of 10 or 100 but obtained similar results
with aperture 1.0. We can conclude that the aperture parameter
seems independent of the function used to compute the final
prediction.



Classifier Accuracy

Majority 7.4 %

DFT 3.4 %

SVD 3.8 %

ESN (nx = 300) 19.8 %

Conceptor (nx = 300) (Evidence) 23.6 %

Conceptor (nx = 200) (Similarity) 31.1 %

TABLE I: Comparison of 10-fold cross-validation accuracy of
baselines, ESN and Conceptor models on HorseTrack dataset
along with the number of parameters to be learned of each
model.

All results presented above showed significant differences
with the majority classifier with p-values below 1.0%.

C. Reservoir size

In order to evaluate the influence of increasing the number
of units in the reservoir and the possible overfitting, the
performed evaluations with varying reservoir sizes between
50 and 750 for each kind of models (ESN, CFS and CFE).
For each reservoir size, we took the best accuracy found
with various apertures. Figure 2 shows the result of these
experiments. For CFS, the accuracy slowly grows up to 300
units and slightly decrease but it cannot be stated if it exists
significant differences with models above 300 units.

For CFE, the accuracy slowly increases up to 750 units but
stay above the results obtained by CFS. For ESN, results are
clearly below ones obtained with CFE and CFS with a top
performance at 300 units. The accuracy decreases afterwards
and these results could be the sign of overfitting. The top
performance at 300 units is the only result significantly higher
than the majority classifier. If the cause of this drop is over-
fitting, we can observe than CFE and CFS are not impacted
by this issue.

D. Comparison

Table I shows the comparison of our different models
with the majority baseline and two common methods based
on Discrete Fourier Transform (DFT) and Singular Value
Decomposition (SVD). For the first method, we transform the
timeseries into vector representation of Fourier coefficents and
used these features to find the most similar horse observed
during the training phase. This most similar horse was returned
as the one predicted by the model. For SVD, we transformed
timeseries into a vector representation composed on singular
vectors and values and used the same methods as DFT to find
the most similar horse in the training set.

The best method found during our evaluation is the Con-
ceptor network based on the similarity measure with 31.08%
which outperformed the second best method, the Conceptor
network based on evidence with 23.62%. These two Conceptor

networks outperformed the best ESN model which obtained
19.76%. These three models obtained results significantly
higher than the majority classifier with respectively p =
0.21%, p = 0.38% and p = 3.79% The two baselines based
on DFT and SVD obtained result not significantly different
than the majority classifier and similar to a random classifier.

VI. CONCLUSIONS

In this paper, we investigated the possibility to use Echo
State Networks-based neural models and Conceptor methods
to allow an automatic health monitoring system, aimed to
prevent injuries or disease on horses, to incrementally and scal-
ably identify horses based on sensor data. Multi-dimensional
data were collected from sensor during horse training sessions
and models had to identify which horse was the source of the
timeseries. We demonstrated that the extended version of the
Reservoir Computing paradigm known as Conceptor network
is able to outperform classical ESNs on this task. We evaluated
two different ways to perform the classification, the first based
on a similarity measure and the second on a function known as
evidence. All Reservoir Computing-based methods evaluated
in this study had very short training time that did not exceed
a few minutes.

Our results show that the classification based on the general-
ized cosine function outperformed evidence-based models and
that similarity-based models can obtained interesting results in
timeseries classification. The useful conclusion of this study is
the impact of the aperture parameter which stay similar for the
different classification methods and the overall performance of
conceptor-based Reservoir Computing which can be used with
Conceptor Logic to incrementally learn and identify dynamical
patterns.

Beyond these preliminary results, an important range for
improvement remains possible. In the future, we would like to
evaluate methods based on self-supervised Convolutional Neu-
ral Networks, and classical methods in timeseries classification
such as Piecewise Aggregate Approximation (APP) or Auto-
Correlation Coefficients (ACC). To evaluate these methods, we
will not base our evaluation on a simple accuracy metrics, but
on Mean Reciprocal Rank (MRR) as the final system should
be able to propose a set of possible candidates. In addition to
this metrics, we will also evaluate methods based on the time
necessary to analyse a new incoming session.
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